top of page

exercise 1.7

ZIP with MATLAB scripts and note:

Small tag OK.jpg

 example 1.1 notes:

Small tag OK.jpg
pozar_01_exercise_07_question.jpg
001.jpg
eps0=8.854e-12           % [F/m] electric permittivity 
mu0=4*pi*1e-7           % [H/m] magnetic permeability
c0=1/(eps0*mu0)^.5   % light velocity

er1=(5-1j*2)                    % relative permittivity lossy dielectric
mur=1

% c1=c0/er1^.5          % wave velocity in air = c0

f0=1e9
lambda0=c0/f0
k0=2*pi/lambda0


% incident field amplitude, plane wave, right on dielectric-metal interface 
E0=4    % [V/m] 

gamma=1j*2*pi*f0*(mu0*mur*er1*eps0)^.5    
% lossy dielectric propagation constant

alpha=real(gamma)
beta=imag(gamma)

etha=1j*2*pi*f0*mu0*mur/gamma


% lossy dielectric - metal interface reflection coefficient

R=-1

% Ei=E0*exp() ? unknown for any other z~=0, so don't get lost in it

dz=lambda0/200;
z=[-.5:dz:0];

Ei=E0*exp(-gamma*z);

E=Ei+R*E0*exp(gamma*z);

figure(1)

plot(z,abs(E))
grid on

xlabel('z');ylabel('|E|')
title('|E| [V/m]')

 
001-2.jpg
figure(2)
plot(z,10*log10(abs(E)/E0))
grid on
xlabel('z');ylabel('L')
title('L(z) [dB] lossy dielectric layer z thick on metal')
001-3.jpg
thicker paint coating is not going to help much to further attenuate incident field because the one doing the job of nulling field near surface is the metal underneath.

I have included scripts from example 1.1 that show burst reflected on metal.


%% E(t) burst reflected through lossy dielectric

cd fdtd_1d_4_3
fdtd_1d_4_1_3



%% E peak burst reflected through lossy dielectric


cd ..
cd fdtd_1d_4_5
fdtd_1d_4_1_5
002.jpg
003-1.jpg
003-2.jpg
bottom of page