example 3.3
ZIP with MATLAB scripts and note:
example 3.3 notes:
For Coaxial TE11, to avoid solving
the product kc*a can be approximated as function of b/a ratio with the simple expression kc_a(b_over_a)=2/(1+b_over_a)
b_over_a=[1:.01:12];
kca_approx=2./(1+b_over_a);
plot(b_over_a,kca_approx);grid on;
ax=gca;axis(ax,[1 12 0 1])
xlabel('b/a');ylabel('kc*a')
legend('approximated kc*a')
this graph on right hand side is not the one [POZAR] uses on page 133.
da_in=.0645;db_in=.205; % Diameters, both in inches
a_in=da_in/2 % radii
b_in=db_in/2
in2m=25.40001*1e-3
a=a_in*in2m
b=b_in*in2m
One annot plug arbitrary value in vector expecting to match value
kca1_approx=kca_approx(b_in/a_in) returns no integer index error.
f_kca_approx=@(x) 2/(1+x);
kca1_approx=f_kca_approx(b_in/a_in)
f2=@(x) 2/(1+x)-f_kca_approx(b_in/a_in)
bva_approx=fsolve(f2,1)
wavenumber of the TE11 cutoff frequency, units: m^-1
kc1=kca1_approx/a
c0=299792486;
er=2.2;
fc_TE11=c0*kc1/(2*pi*er^.5)
Manufacturers recommend not working right on the edges of bands
f_max_TEM=.95*fc_TE11
Although kc~2/(a+b) seems to be a commonly used approximation to obtain coaxial TE11 cut-off frequency, it's widely spread in literature, the equation to get all coaxial cut-off frequencies is in [POZAR] page 132.
kca1_approx = 0.478664192949907
bva_approx = 3.178294566963450
kc1 = 5.843423115418565e+02
fc_TE11 = 1.879736043180762e+10
f_max_TEM = 1.785749241021724e+10