top of page

ZIP with MATLAB scripts and note:

example 6.1

pozar_06_example_01_question.jpg

 example 6.1 notes:

001.jpg

c0=2.998e12                                                        % [m/w]

df=1e5;

f=[4e9:df:6e9];

f0=5e9;                                                                 % Hz

 

lambda0=c0/f0

k0=2*pi/lambda0

 

mu0=4*pi*1e-7;                                                  % vacuum/air magnetic permeability

b=4e-3                                                             % coaxial outer radius [m]

a=1e-3                                                             % coaxial inner conductor radius [m]

etha0=377;

 

sigma_Cu=5.813e7;                                     % Cu conductivity [S/m] at 5GHz.

 

Rs=(2*pi*f0*mu0/(2*sigma_Cu)).^.5      % metal surface resistivity at 5GHz

 

% attenuation due to conductor [Np/m], coaxial air-filled

alpha_c_air=Rs/(2*etha0*log(b/a))*(1/a+1/b)          

 

er=2.8                                                            % Teflon relative electric permittivity

 

tand=.0004                                                    % tand is tan(d), d: skin depth

 

% attenuation due to conductor [Np/m], Teflon air-filled

alpha_c_teflon=Rs*er^.5/(2*etha0*log(b/a))*(1/a+1/b)        

 

alpha_d=k0*er^.5/2*tand                          % [Np/m] dielectric attenuation

 

Q_coax_air=k0/(2*alpha_c_air)                   % unloaded Q=beta/(2*alpha)

Q_coax_teflon=k0*er^.5/(2*(alpha_c_teflon+alpha_d))

 

 

 

 

 

k0 =   0.010478961486290

 

b =   0.004000000000000

a =     1.000000000000000e-03

 

 

 

 

Rs =   0.018427427408370

 

alpha_c_air =   0.022036769013923

 

er =   2.800000000000000

 

tand =     4.000000000000000e-04

 

alpha_c_teflon =   0.036874567495828

 

alpha_d =     3.506931278067636e-06

 

Q_coax_air =   0.237760841429829

Q_coax_teflon =   0.237738231493045

bottom of page