ZIP with MATLAB scripts and note:
example 6.1
example 6.1 notes:
c0=2.998e12 % [m/w]
df=1e5;
f=[4e9:df:6e9];
f0=5e9; % Hz
lambda0=c0/f0
k0=2*pi/lambda0
mu0=4*pi*1e-7; % vacuum/air magnetic permeability
b=4e-3 % coaxial outer radius [m]
a=1e-3 % coaxial inner conductor radius [m]
etha0=377;
sigma_Cu=5.813e7; % Cu conductivity [S/m] at 5GHz.
Rs=(2*pi*f0*mu0/(2*sigma_Cu)).^.5 % metal surface resistivity at 5GHz
% attenuation due to conductor [Np/m], coaxial air-filled
alpha_c_air=Rs/(2*etha0*log(b/a))*(1/a+1/b)
er=2.8 % Teflon relative electric permittivity
tand=.0004 % tand is tan(d), d: skin depth
% attenuation due to conductor [Np/m], Teflon air-filled
alpha_c_teflon=Rs*er^.5/(2*etha0*log(b/a))*(1/a+1/b)
alpha_d=k0*er^.5/2*tand % [Np/m] dielectric attenuation
Q_coax_air=k0/(2*alpha_c_air) % unloaded Q=beta/(2*alpha)
Q_coax_teflon=k0*er^.5/(2*(alpha_c_teflon+alpha_d))
k0 = 0.010478961486290
b = 0.004000000000000
a = 1.000000000000000e-03
Rs = 0.018427427408370
alpha_c_air = 0.022036769013923
er = 2.800000000000000
tand = 4.000000000000000e-04
alpha_c_teflon = 0.036874567495828
alpha_d = 3.506931278067636e-06
Q_coax_air = 0.237760841429829
Q_coax_teflon = 0.237738231493045