top of page

exercise 11.1

ZIP with MATLAB scripts and note:

Small tag OK.jpg

 exercise 11.1 notes:

Small tag OK.jpg
pozar_11_exercise_01_question.jpg
001.jpg
002.jpg

On right hand side, [POZAR] table showing Shottky key parameters, the diode of interest Skyworks SMS1546 on pole position of this table.

[ref1] Skyworks SMS1546 key parameters as shown in Skyworks website. Also attached SMS15464 datasheet.To buy a sample dial (+1) 800 777 7334.

005.jpg

f0=10e9                                         % [Hz]

       

Cj=.38e-12          % [F]  np or metal-n junction capacitance

rs=4      % [ohm] diode contact and spreading resistance

Is=.3e-6                                         % [A]

Lp=0

Cp=0

Ls=1e-9           % [H] pg527 diode package contacts

Cp=.07e-12               % [F]   diode package contacts

 

I0=[0 20 50]*1e-6

 

alpha=1/(25*1e-3)                          % [1/mV]

 

Rj=1./(alpha*(I0+Is))         % [ohm] non-linear resistor

 

Gd=1./Rj                     % diode dynamic conductance

% for V=V0+v0*cos(w0*t)

%  I=I0+v0^2/4*Gd1+v0*Gd*cos(w0*t)+v0^2/4*cos(2*w0*t)

% dI_dc=v0^2*Gd1/4   

% I_dc variations considering

% I=I0+v0^2/4*Gd1+v0*Gd*cos(w0*t) only

% Pin_RF=v0^2*Gd/2

% beta_i=dI_dc/Pin_RF

% current sensitivity seems constant

Gd1=alpha^2*(I0+Is)

beta_i=Gd1./(2*Gd)

% voltage sensitivity

beta_v=beta_i.*Rj

 

f0 =     1.000000000000000e+10

 

Cj =     3.800000000000000e-13

rs =     4

Is =     3.000000000000000e-07

Lp =     0

Cp =     0

Ls =     1.000000000000000e-09

Cp =     7.000000000000001e-14

 

I0 =   1.0e-04 *

                   0   0.200000000000000   0.500000000000000

alpha =

    40

Rj =   1.0e+04 *

   8.333333333333332   0.123152709359606   0.049701789264414

Gd =

   0.000012000000000   0.000812000000000   0.002012000000000

Gd1 =

   0.000480000000000   0.032480000000000   0.080480000000000

beta_i =

  19.999999999999996  19.999999999999996  20.000000000000000

beta_v =

   1.0e+06 *

   1.666666666666666   0.024630541871921   0.009940357852883

The obtained beta_v does not agree with solutions manual 3rd column in supplied table.
009.jpg
Try 1, to find out whether the provided beta_v in solutions manual is really correct, or where I went wrong from Rj to beta_v through beta_i

Z1=1./(1./(2*pi*f0*Cj)+Rj)+rs

Zin=1./(1./Z1+1./(2*pi*f0*Cp))+2*pi*f0*Ls

 

Pin=.5*(I0+Is).^2.*Zin

 

(Gd1./Pin).^.5

 

syms V_0

V0=zeros(1,numel(Rj))

for k=1:1:numel(Rj)

    eq1=Is*(exp(alpha*V_0)-1)/Zin(k)-V_0/(Rj(k)+rs)==0

    V0(k)=double(solve(eq1,V_0))

end

 

Gd1=alpha^2*Is*exp(alpha*V0)

beta_i=Gd1./(2*Gd)     % [A/W]

beta_v=beta_i./Rj   % [V/W] it's not supposed to be constant

V0 =

     0     0     0

Gd1 =

   1.0e-03 *

   0.480000000000000   0.480000000000000   0.480000000000000

beta_i =

  19.999999999999996   0.295566502463054   0.119284294234592

beta_v =

   1.0e-03 *

   0.240000000000000   0.240000000000000   0.240000000000000

Try 2:

k=1

syms V

eq1=(Is^2*(exp(alpha*V)-1))^2*Zin(k)-(I0(k)+Is)==0

V0=double(solve(eq1,V))

V0=V0(2)       % ignore solution with imaginary component

 

Gd1=alpha^2*Is*exp(alpha*V0)

 

beta_i=Gd1./(2*Gd)

beta_v=beta_i.*Rj

V0 =

   0.511473975117513

Gd1 =

     3.685142096437841e+05

beta_i =

   1.0e+10 *

   1.535475873515767   0.022691761677573   0.009157907794329

beta_v =

   1.0e+15 *

   1.279563227929806   0.000279455193074   0.000045516440330

Don't know yet how to obtain

 

beta_v=[8.7 6.4 4.6]  % [V/mW]

 

and perhaps the supplied values should be in [mV/mW] or [V/W] the reason why [V/mW] units supplied not clear.

 

Voltage sensitivity beta_v is supposed to be constant, or it should me measurable on a scope and show like graph slope in figure 11.5 [POZAR] pg529.

010.jpg
Since the carrier frequency is supplied f0 and all diode model parameters have been made available, one way around, would be, like in example 10.4; generate signals, build a DC + AC diode model, the AC part of the model as shown in [POZAR] pg527, then cherry-pick Taylor terms as done in [POZAR] explanation for the DC part of the diode model ( that in my opinion, the DC model, needs a bit of further development or at least explanation), to precisely avoid reaching a constant Gd1/(2*Gd), and build a test set to obtain Pin and d_Idc .
009-5.jpg
Instead I am going to explore a diode test set already implemented with simulink and leave this question open regarding beta_v.
Included in .zip for this exercise                                           Click on green Scope and the expected 
there's example_power_diode.xls                                       time signals show up:
012.jpg
014.jpg

    The diode block has the following parameters                         And the block tagged Continuous has a button to generate reports

013.jpg
015.jpg
And these are the reports obtained from Continuous

example_power_diode_report2.rep                                                            

 

Simscape Power Systems (Specialized Technology) Report.

generated by powergui,

28-Apr-2020 17:42:16

 

Model : \example_power_diode.slx.

 

[1] Steady-State voltages and currents:

 

States at 0 Hz :

                                          

  0.0000e+00 A   --->  'Il_R  L          '

  0.0000e+00 V   --->  'Uc_snubber: Diode'

                                         

Measurements at 0 Hz :

                              

  0.0000e+00 V   --->  U_Vload

  0.0000e+00 A   --->  I_Iload

                             

Sources at 0 Hz :

                                  

  0.0000e+00 V   --->  U_120V 60Hz

 

Nonlinear elements at 0 Hz :

 

[2] Initial values of States Variables:

1   'Il' R  L            =    1.8088e-01 A

 2   'Uc' snubber: Diode  =   -3.8006e+00 V

 

[3] Machine Load Flow solution:

example_power_diode.net

Unit specified : OMU

 

rlc matrix:

 

Node_1 Node_2 Type      R(ohms)     L(mH)       C(uF)/U(V)  Branch#  Block name

------------------------------------------------------------------------------------

2      0      S         1           1           0           1        R  L     

3      2      S         20          0           4           2        snubber: Diode

4      5      S         0.001       0           0           3        Ron switch: Diode

5      2      S         1           0           0           4        SPID Diode      

 

Number of nodes: 5

Number of branches: 4

Number of transformers: 0

Number of mutuals (inductive coupling): 0

Number of voltage sources: 2

Number of current sources: 0

Number of switches: 0

 

Source matrix:

 

Node1 Node2 U/I  Mag.     Phase    Frequency Type   Block name

           (0/1) (V/A)  (degrees)     (Hz)

--------------------------------------------------------------

3     0     0    120      0        60        22     120V 60Hz

3     4     0    0.8      0        0         21     Vf: Diode

 

 

Total number of inductances and capacitors: 2

[ref1]
Schottky diode 01 - Skyworks SMS1546-005
bottom of page