top of page

exercise 5.22

ZIP with MATLAB scripts and note:

Small tag OK.jpg

 exercise 5.22 notes:

Small tag OK.jpg
pozar_05_exercise_22_question.jpg
002.jpg

clear all;close all;clc

syms K A L Z0 ZL z

f(z)=A*sin(pi*z/L)

F(z)=int(f,z)

F2(z)=K*exp(-(A*L*cos((pi*z)/L))/pi)

 

eq1=K*F2(0)==Z0

eq2=K*F2(L)==ZL

 

A0=solve(K*F2(0)-Z0==K*F2(L)-ZL,A)

 

 

K0=solve(K*F2(0)-Z0==K*F2(L)-ZL,K)

 

 

 

eq1*eq2

 

eq3=K^2-ZL*Z0==0

 

K1=solve(eq3,K)

 

 

 

eq1/eq2

 

eq4=exp(-(2*A*L)/pi) -Z0/ZL

A1=solve(eq4,A)

f(z) =A*sin((pi*z)/L)

F(z) =-(A*L*cos((pi*z)/L))/pi

F2(z) =K*exp(-(A*L*cos((pi*z)/L))/pi)

 

eq1 =K*exp(-(A*L)/pi) == Z0

eq2 =K*exp((A*L)/pi) == ZL

 

A0 =

 (pi*log(-(Z0 - ZL + (4*K^4 + Z0^2 - 2*Z0*ZL + ZL^2)^(1/2))/(2*K^2)))/L

  (pi*log((ZL - Z0 + (4*K^4 + Z0^2 - 2*Z0*ZL + ZL^2)^(1/2))/(2*K^2)))/L

K0 =

  (exp((A*L)/(2*pi))*(-(exp((A*L)/pi) - 1)*(exp((A*L)/pi) + 1)*(Z0 - ZL))^(1/2))/(exp((2*A*L)/pi) - 1)

 -(exp((A*L)/(2*pi))*(-(exp((A*L)/pi) - 1)*(exp((A*L)/pi) + 1)*(Z0 - ZL))^(1/2))/(exp((2*A*L)/pi) - 1)

 

=K^2 == Z0*ZL

 

=exp(-(2*A*L)/pi) == Z0/ZL

 

K1 =

  Z0^(1/2)*ZL^(1/2)

 -Z0^(1/2)*ZL^(1/2)

 

= exp(-(2*A*L)/pi) == Z0/ZL

 

eq4 = exp(-(2*A*L)/pi) - Z0/ZL

A1 = -(pi*log(Z0/ZL))/(2*L)

syms ZL Z0 L z

K= ZL^(1/2)*Z0^(1/2)

A = (pi*log(ZL/Z0))/(2*L)

Zin(z)=K*exp((-A*L*cos((pi*z)/L))/pi)

subs(Zin,ZL/Z0,1.5)

 

MATLAB does not catch Z0^(1/2)*ZL^(1/2)*..

when told to substitute ZL/Z0 with numeric value.

 

G(L)=int(.5*exp(-1j*2*pi*z)*A*sin((pi*z)/L),z,0,L)

 

fplot(@(L) G(L))

Warning: Error updating FunctionLine.

The following error was reported evaluating

the function in FunctionLine  update: Division by zero.

 

Gnum=- log(ZL/Z0)./(16*L.^2 - 4) - (exp(-pi*L*2i)*log(ZL/Z0))./(16*L.^2 - 4);

Gnum=subs(Gnum,ZL/Z0,1.5)

 

L=[0:.001:4];

 

Gnum =- log(3/2)./(16*L.^2 - 4) - (exp(-pi*L*2i)*log(3/2))./(16*L.^2 - 4);

 

plot(pi*L,abs(Gnum));grid on

001.jpg

 

 

 

Zin(z) = Z0^(1/2)*ZL^(1/2)*exp(-(cos((pi*z)/L)*log(ZL/Z0))/2)

Zin(z) =Z0^(1/2)*ZL^(1/2)*exp(-(cos((pi*z)/L)*log(3/2))/2)

 

 

 

 

G = - log(ZL/Z0)/(4*(4*L^2 - 1)) - (exp(-pi*L*2i)*log(ZL/Z0))/(4*(4*L^2 - 1))

 

G = - log(3/2)/(16*L^2 - 4) - (exp(-pi*L*2i)*log(3/2))/(16*L^2 - 4)

once more, it's easier to solve the problem numerically than symbolically, let alone the time to find out what symbolic expression and conditions the symbolic solver will decide to solve, or just return trivial solutions.

Correction Solutions Manual: 

correction_SM.jpg
bottom of page