top of page

example 5.1

ZIP with MATLAB scripts and note:

Small tag OK.jpg
pozar_05_example_01_question.jpg

 example 5.1 notes:

Small tag OK.jpg

How to decide whether first next-to-load circuit element has to be shunt or series, when single frequency matching with 2-element L-shape networks.

 

Since near short-circuit impedances are prone to increased noise and may damage power supplies, [POZAR] suggests the criterion displayed on the right

002 pozar_05_example_01_circuit.jpg

The matching network orientation, whether leftward or rightward, is assigned to avoid short circuit (SC), open circuit (OC), or unnecessarily long impedance trajectories along the Smith chart. If the load on the Smith chart is located inside the 1+jx circle, then, in order to reduce impedance, start with shunt. If load is outside circle 1+jx, increase impedance with series component.

Comment: the term 'series' is here used as the jX component connected in both circuits above.

 

But in some literature sources like [MEDLY] a distinction is made between 'cascade' that would the jX component  connection above, and 'series' would be as shown on the right hand side:

 

[MEDLY] Microwave and RF Circuits: Analysis, Synthesis and Design. Author Max W Medley Jr.

001 MEDLY definition of series jX connec

The following puts ZL on Smith Chart, tells whether ZL is inside or outside 1+jx, and calculates match values X and B for a single frequency. Ceq value has been previously calculated, it can be done with pen and paper, MATLAB or ADS LEMtch Assistant:

 

clc;clear all;format long;

ZL=200-1j*100;Z0=100;f0=5e8;    % Hz

Ceq=1/(2*pi*f0*mag(ZL));            % 3.183pF at 500MHz for ADS LEMtch assistant

sm1=smithchart;hold all;

gamma_L=(ZL-Z0)/(ZL+Z0);

 

if imag(ZL)<0 sign1='-';          % show ZL on Smith chart adding text showing values

      else   sign1='+';

end

hold all;plot(real(gamma_L),imag(gamma_L),'ro','LineWidth',1.5);

003.jpg

str1=['ZL =' num2str(real(ZL)) sign1 'j' num2str(abs(imag(ZL))) ' \rightarrow'];

text(real(gamma_L),imag(gamma_L)+.01, str1,...

                                                                     'Color','blue',...

                                                                     'FontSize',20,...

                                                                     'HorizontalAlignment','right',...

                                                                     'VerticalAlignment','middle');

RL=real(ZL);XL=imag(ZL);

if abs(real(ZL/Z0))>=1                     % ZL inside 1+jx

    disp(' ZL inside 1+jx');

    B1=1/(RL^2+XL^2)*(XL+(RL/Z0)^.5*(RL^2+XL^2-Z0*RL)^.5)   

    B2=1/(RL^2+XL^2)*(XL-(RL/Z0)^.5*(RL^2+XL^2-Z0*RL)^.5)

    X1=1/B1+XL*Z0/RL-Z0/(B1*RL)   ;    X2=1/B2+XL*Z0/RL-Z0/(B2*RL)

    elseif abs(real(ZL/Z0))<=1         % ZL outside 1+jx

        disp(' ZL outside 1+jx');X1=(RL*(Z0-RL))^.5-XL; X2=-(RL*(Z0-RL))^.5-XL

        B1=1/Z0*((Z0-RL)/RL)^.5; B2=-1/Z0*((Z0-RL)/RL)^.5

end

[C1 ctype]=B2LC(B1,f0)                  % 1st solution 

 

[L1 ltype]=X2LC(X1,f0)

 

 

[L2 ctype]=B2LC(B2,f0)                  % 2nd solution

 

[C2 ltype]=X2LC(X2,f0)

ZL inside 1+jx

B1 =

   0.002898979485566

B2 =

  -0.006898979485566

X1 =

     1.224744871391589e+02

X2 =

    -1.224744871391589e+02

 

C1 =     9.227738300997709e-13

ctype =C [Farad]

L1 =     3.898484006168380e-08

ltype =L [Henry]

 

L2 =     2.167378326912196e+07

ctype =L [Henry]

C2 =     3.847649490485592e+11

ltype =C [Farad]

To simplify reactance translation into capacitance or inductance the following functions B2LC.m and X2LC.m can be used:

004.jpg

function [LC char1]=B2LC(B_,f1)

% B2LC translates shunt reactance to capacitive or inductive

% impedance depending upon the sign of the input reactance

  if B_>=0

      LC=B_/(2*pi*f1);    char1='C [Farad]';

  end

  if B_<0

      LC=1/(abs(B_)*(2*pi*f1));    char1='L [Henry]';

  end;

end

function [LC char1]=X2LC(X_,f1)

% B2LC translates shunt reactance to capacitive or inductive

% impedance depending upon the sign of the input reactance

  if X_>=0

      LC=X_/(2*pi*f1);    char1='L [Henry]';

  end

  if X_<0

      LC=1/(abs(X_)*2*pi*f1);    char1='C [Farad]';

  end;

end

Zin1=1j*2*pi*f*L1+1./((1j*2*pi*C1*f)+1/ZL);

gamma_in1=(Zin1-Z0)./(Zin1+Z0);

 

Zin2=1/(1j*2*pi*f*C2)+1./(1./(1j*2*pi*L2*f)+1/ZL);

gamma_in1=(Zin1-Z0)./(Zin1+Z0);

 

figure(2)

plot(f,abs(gamma_in1),'LineWidth',2)

hold all

plot(f,abs(gamma_in2),'--', 'LineWidth',2)

grid on

title('L-shape 2-element single f0 impedance match');xlabel(f);

005.jpg
ads__001.jpg
ads__002.jpg
ads__003.jpg

Further reading:

non-foster circuits (NFC), negative impedance converters (NIC) and Frequency Dependant Negative Resistors (FDNR)

[POZAR] page 538 briefly mentions the general characteristic I(V) of negative resistance devices like Gunn, IMPATT and tunnel diodes.

 

A design example of single port oscillator with negative resistance diode available in [POZAR] example 13.2 615pg, and oscillator with GaAS MESFET transistor with negative resistance I(V) in example 13.3 616pg.

further_reading_001.jpg
further_reading_002.jpg
bottom of page