exercise 5.2
ZIP with MATLAB scripts and note:
exercise 5.2 notes:
1.- What kind of loads can be matched with a single positive reactance?
Any load that already has real(ZL)=Z0. Then the match is achieved with X=-imag(ZL)
So the only impedances that series jX may match are located along the red arch on the top Smith chart.
2.- What kind of loads can be matched with a single negative reactance?
This is the complementary case to (1) where jB in parallel can only match loads on the upper red arch along circle R=Z0.
This single reactance approach doesn't match resistive loads.
3.- Example ZL=2*Z0 imag(ZL)=0 inside circle constant R=Z0
To match this impedance, Load to Generator, Red marker to Green marker, add a parallel resistance same value as ZL.
clc;clear all;close all
Z0=50
ZL=2*Z0
hf1=figure(1);sm1=smithchart; ax1=hf1.CurrentAxes;
hold(ax1,'on');
gamma_ZL=(ZL-Z0)/(ZL+Z0);
plot(ax1,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % ZL
gamma_Z0=(Z0-Z0)/(Z0+Z0);
plot(ax1,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Z0
legend('ZL','Z0')
title(' ZL=2*Z0')
4.- Example ZL=1/2*Z0 imag(ZL)=0ZL outside circle constant R=Z0
To match impedance, Load to Generator, Red marker to Green marker, add a series resistor same value as ZL.
ZL=.5*Z0
hf2=figure(2);sm2=smithchart; ax2=hf2.CurrentAxes;
hold(ax2,'on');
gamma_ZL=(ZL-Z0)/(ZL+Z0);
plot(ax2,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % ZL
gamma_Z0=(Z0-Z0)/(Z0+Z0);
plot(ax2,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Z0
legend('ZL','Z0')
title(' ZL=Z0/2')
Following, another 2 examples where Z0' is no longer the centre of the Smith chart:
5.- Z Smith Chart: Randomly selecting ZL and Z0, but both on same constant R circle.
Load to Generator: Red marker to Green marker.
SC_ref=50;
N=10
real_Z0=.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)
Z0=real_Z0+1j*.01*randi([round([SC_ref/N*1000 SC_ref*N*100],4)],1,1)
ZL=real_Z0+1j*.01*randi([round([SC_ref/N*100 SC_ref*N*100],4)],1,1)
hf3=figure(3);sm3=smithchart; ax3=hf3.CurrentAxes;
hold(ax3,'on');
gamma_ZL=(ZL-SC_ref)/(ZL+SC_ref);
plot(ax3,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % ZL
gamma_Z0=(Z0-SC_ref)/(Z0+SC_ref);
plot(ax3,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Z0
Smith_plotRcircle(ax3,real(Z0),SC_ref,[.8 .2 .2])
legend('ZL','Z0','circle constant R')
If Z Load on right hand side of Z0', both on same circle constant R,
add series capacitance to rotate ZL Counter Clock Wise (CCW) along circle constant R.
If Z Load on left hand side of Z0', both on same circle constant R,
add series inductance to rotate ZL Clock Wise (CW) along circle constant R.
6.- Using Y Smith Chart constant G circles on Z Smith Chart:
Randomly selecting YL and Y0, but both on same constant G circle.
Load to Generator: Red marker to Green marker.
SC_ref=10;
N=10
real_Y0=(.01*randi([round([SC_ref/N SC_ref*N],4)],1,1))^-1
Y0=real_Y0+1j*.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)
YL=real_Y0+1j*.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)
Z0=1/Y0
ZL=1/YL
hf4=figure(4);sm4=smithchart; ax4=hf4.CurrentAxes;
To use Y Smith chart field Type of the Smith Chart handle has to be changed:
sm4.Type='y'
hold(ax4,'on');
gamma_YL=(SC_ref-YL)/(SC_ref+YL);
plot(ax4,real(gamma_YL),imag(gamma_YL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % YL
gamma_Y0=(SC_ref-Y0)/(SC_ref+Y0);
plot(ax4,real(gamma_Y0),imag(gamma_Y0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Y0
Smith_plotGcircle(ax4,1/real(Y0),1/SC_ref,[.8 .2 .2])
legend('YL','Y0','circle constant G')
But as mentioned, it's more practical to use Y Smith Chart constant G circles on the Z Smith Chart instead.
hf5=figure(5);sm5=smithchart; ax5=hf5.CurrentAxes;
sm5.Type='z' % Z is the default Smith Chart type
hold(ax5,'on');
gamma_ZL=-gamma_YL % =(SC_ref-YL)/(SC_ref+YL);
plot(ax5,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % ZL
gamma_Z0=-gamma_Y0 % =(SC_ref-Y0)/(SC_ref+Y0);
plot(ax5,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Z0
Smith_plotRcircle(ax5,real(Y0),SC_ref,[.8 .2 .2])
legend('ZL','Z0','circle constant G','Location','northeastoutside')