top of page

exercise 5.2

ZIP with MATLAB scripts and note:

Small tag OK.jpg
pozar_05_exercise_02_question.jpg

 exercise 5.2 notes:

Small tag OK.jpg

1.- What kind of loads can be matched with a single positive reactance?

Any load that already has real(ZL)=Z0. Then the match is achieved with X=-imag(ZL)

So the only impedances that series jX may match are located along the red arch on the top Smith chart.

 

 

 

 

 

 


 

2.- What kind of loads can be matched with a single negative reactance?

This is the complementary case to (1) where jB in parallel can only match loads on the upper red arch along circle R=Z0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 




This single reactance approach doesn't match resistive loads.


3.- Example ZL=2*Z0 imag(ZL)=0 inside circle constant R=Z0

To match this impedance, Load to Generator, Red marker to Green marker, add a parallel resistance same value as ZL.

clc;clear all;close all
Z0=50
ZL=2*Z0

hf1=figure(1);sm1=smithchart; ax1=hf1.CurrentAxes;
hold(ax1,'on');

gamma_ZL=(ZL-Z0)/(ZL+Z0);
plot(ax1,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0])
% ZL

gamma_Z0=(Z0-Z0)/(Z0+Z0);
plot(ax1,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0])
% Z0
legend('ZL','Z0')
title(' ZL=2*Z0')

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 


4.- Example ZL=1/2*Z0 imag(ZL)=0ZL outside circle constant R=Z0

 

To match impedance, Load to Generator, Red marker to Green marker, add a series resistor same value as ZL.

ZL=.5*Z0

hf2=figure(2);sm2=smithchart; ax2=hf2.CurrentAxes;
hold(ax2,'on');

gamma_ZL=(ZL-Z0)/(ZL+Z0);
plot(ax2,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0])
% ZL

gamma_Z0=(Z0-Z0)/(Z0+Z0);
plot(ax2,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0])
% Z0
legend('ZL','Z0')
title(' ZL=Z0/2')

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Following, another 2 examples where Z0' is no longer the centre of the Smith chart:

 


5.- Z Smith Chart: Randomly selecting ZL and Z0, but both on same constant R circle.


Load to Generator: Red marker to Green marker.

SC_ref=50;

N=10

real_Z0=.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)
Z0=real_Z0+1j*.01*randi([round([SC_ref/N*1000 SC_ref*N*100],4)],1,1)
ZL=real_Z0+1j*.01*randi([round([SC_ref/N*100 SC_ref*N*100],4)],1,1)

hf3=figure(3);sm3=smithchart; ax3=hf3.CurrentAxes;
hold(ax3,'on');

gamma_ZL=(ZL-SC_ref)/(ZL+SC_ref);
plot(ax3,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0])
% ZL

gamma_Z0=(Z0-SC_ref)/(Z0+SC_ref);
plot(ax3,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0])
% Z0

 

 

 

 

 

 

 

 

 

 

 

 

Smith_plotRcircle(ax3,real(Z0),SC_ref,[.8 .2 .2])
legend('ZL','Z0','circle constant R')

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If Z Load on right hand side of Z0', both on same circle constant R,
add series capacitance to rotate ZL Counter Clock Wise (CCW) along circle constant R.



If Z Load on left hand side of Z0', both on same circle constant R,
add series inductance to rotate ZL Clock Wise (CW) along circle constant R.


6.- Using Y Smith Chart constant G circles on Z Smith Chart:
Randomly selecting YL and Y0, but both on same constant G circle.

 


Load to Generator: Red marker to Green marker.

SC_ref=10;
N=10

real_Y0=(.01*randi([round([SC_ref/N SC_ref*N],4)],1,1))^-1
Y0=real_Y0+1j*.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)
YL=real_Y0+1j*.01*randi([round([SC_ref/N SC_ref*N*100],4)],1,1)

Z0=1/Y0
ZL=1/YL

hf4=figure(4);sm4=smithchart; ax4=hf4.CurrentAxes;


To use Y Smith chart field Type of the Smith Chart handle has to be changed:

sm4.Type='y'

hold(ax4,'on');

gamma_YL=(SC_ref-YL)/(SC_ref+YL);
plot(ax4,real(gamma_YL),imag(gamma_YL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0])
% YL

gamma_Y0=(SC_ref-Y0)/(SC_ref+Y0);
plot(ax4,real(gamma_Y0),imag(gamma_Y0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0])
% Y0

Smith_plotGcircle(ax4,1/real(Y0),1/SC_ref,[.8 .2 .2])
legend('YL','Y0','circle constant G')


 

But as mentioned, it's more practical to use Y Smith Chart constant G circles on the Z Smith Chart instead.

hf5=figure(5);sm5=smithchart; ax5=hf5.CurrentAxes;
sm5.Type='z'
% Z is the default Smith Chart type

hold(ax5,'on');

gamma_ZL=-gamma_YL
% =(SC_ref-YL)/(SC_ref+YL);
plot(ax5,real(gamma_ZL),imag(gamma_ZL),'o','Color',[1 0 0],'MarkerFaceColor',[1 0 0]) % ZL

gamma_Z0=-gamma_Y0 % =(SC_ref-Y0)/(SC_ref+Y0);
plot(ax5,real(gamma_Z0),imag(gamma_Z0),'o','Color',[0 1 0],'MarkerFaceColor',[0 1 0]) % Z0

Smith_plotRcircle(ax5,real(Y0),SC_ref,[.8 .2 .2])
legend('ZL','Z0','circle constant G','Location','northeastoutside')

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

001-02.jpg
001-01.jpg
001-03.jpg
002.jpg
003.jpg
004.jpg
005.jpg
006.jpg
So, for the readers who are not that familiar with the Smith Chart, this Smith Chart plot is a Z Smith Chart, showing ZL and Z0 with red and green markers respectively, yet the red circle is a constant G circle belonging to the reversed Y Smith Chart, all on the same chart.
 
If Y Load on right hand side of Y0', both being on same constant G circle,add series capacitance to rotate YL Counter Clock Wise (CCW) along circle constant G.
 
If Y Load on left hand side of Y0', both being on same constant G circle,add series inductance to rotate YL Clock Wise (CW) along circle constant G.
 
Summary:
 
When real(ZL)=real(Z0) and imag(ZL)!=0 there is a single series or parallel reactance that can match this type of loads.
 
And in general:
 
When adding series capacitance: Impedance rotates CCW along Z Smith Chart constant resistance circle.
 
When adding series inductance: Impedance rotates CW along Z Smith Chart constant resistance circle.
 
When adding parallel capacitance: Admittance rotates CW along Y Smith Chart constant G (conductance) circle.
 
When adding parallel inductance: Admittance rotates CCW along Y Smith Chart constant G circle.
bottom of page