example 5.8
ZIP with MATLAB scripts and note:
example 5.8 notes:
beta*L=2*pi*D; Dn=D/(2*pi)
c=3e8;Z0=50;ZL=100;
D0=4;
f0=2e9;lambda=c/f0;L=D0*lambda;
dz=L/10000;z1=[0:dz:L/2-dz];
z2=[L/2:dz:L];
% triangular taper
Z1=Z0*exp(2*(z1/L).^2*log(ZL/Z0));
Z2=Z0*exp((4*z2/L-2*z2.^2/L^2-1)*log(ZL/Z0));
z=[z1 z2];
Z_triang=[Z1 Z2];
figure(1);plot(z,Z_triang);grid on;hold all
% the constant Z doesn't give the expected result because
% Z varies along z, pg262 s11_triang~=(Z_triang-Z0)./(Z_triang+Z0)
dD=.001;D=[0:dD:D0];
gamma_triang_mod=.5*log(ZL/Z0)*((sin(pi*D))./(pi*D)).^2;
figure(2);plot(gamma_triang_mod);grid on;hold all
% exponential taper
a=1/z(end)*log(ZL/Z0);
Z_exp=Z0*exp(a*z);
figure(1);plot(z,Z_exp);
gamma_exp_mod=.5*log(ZL/Z0)*abs(sin(2*pi*D))./(2*pi*D);
figure(2);plot(gamma_exp_mod);
% Klopfenstein taper
gamma0=.5*log(ZL/Z0);
% requirement
gamma_m=.02;
A=acosh(gamma0/gamma_m);
gamma_klopfy=gamma0/cosh(A)*cos(((2*pi*D).^2-A^2).^.5);
figure(2);plot(abs(gamma_klopfy));ax2=gca;
legend('triang','exp','klopf');