top of page

ZIP with MATLAB scripts and note:

exercise 6.5

Small tag OK.jpg
pozar_06_exercise_05_question.jpg

 exercise 6.5 notes:

Small tag OK.jpg
pozar_06_exercise_05_circuit.jpg

c0=2998792586;

 

LengthTL=.03   % 3cm stub length

 

f0=6e9;

lambda0=c0/f0   % air fllled transmission line

 

ZLoad_1=0

Z0=100

 

D=L/lambda0

 

ZinTL=1j*Z0*tan(2*pi*D)

 

% if capacitor C were for instance 10e-12

 

C1=10e-12       % Farad

Zin=1./(1j*2*pi*f0*C1+1./ZinTL)

 

% Now calculating capacitor that brings resonance at f0:

% Resonance takes place when

% ZinTL=1j*Z0*tan(2*pi*D);            % short-circuit stub

syms C0

C0=double(solve(2*pi*f0*C0-1./(Z0*tan(2*pi/lambda0*LengthTL))==0,C0))

 

 Corrections on the solutions manual:

 1. air-filled TL beta is 12.57m^-1, not 125.7m^-1

 2. beta*L is not 216degree, but 21.6

 3. Zin is half the shown value, it's not 1j*72.6 ohm, but 1j*39.61

 4. therefore the sought capacitor value is not 0.36pF but 0.66pF

 

2*pi*f0/c0               

2*pi*f0/c0*LengthTL   % betal*L [rad]    

2*pi*f0/c0*LengthTL*180/pi   % betal*L [degree]   

100*tand(2*pi*6e9/c0*.03*180/pi)                        

1/(2*pi*f0*100*tand(2*pi*6e9/c0*.03*180/pi))       

 

To achieve the erroneous beta of 125.7 a material with the following relative permittivity would be needed:

 

1/(2*pi*f0/(c0*125.7))^2  

 

in Appendix G, only Titania has a similar relative permittivity

 

 

 

 

 

lambda0 =

   0.499798764333333

 

 

 

D =

   0.060024158002904

ZinTL =

  0.000000000000000 +39.610360288354627i

 

 

 

Zin =

  0.000000000000000 - 2.842967026681587i

 

 

 

 

C0 =

     6.696688355154338e-13

 

 

 

 

 

 

 

=  12.571430254655670

=  99.977247246073190

=  21.608696881045308

=  39.610360288354620

= 6.696688355154338e-13

 

 

 

 

=  99.977

f1=0.5e9;f2=12e9;f0=6e9

Nf=1e6                % amount freq points between f1 f2

df=abs(f1-f2)/(Nf+1)            % frequency resolution

f=[f1:df:f2];

 

ZinTL=1j*Z0*tan(2*pi/c0*f*LengthTL);                   

% short-circuit stub, ideal short

Zin=1./(1j*2*pi*f*C0+1./ZinTL);  

 

figure(1);plot(f,abs(Zin));grid on

title('|Zin| ideal short');xlabel('f')

 

 

 

 

 

 

 

 

 

Gamma=(Zin-Z0)./(Zin+Z0);

absGamma=abs(Gamma);

figure(2);plot(f,absGamma);title('|\Gamma|');grid on

title('|\Gamma| ideal shortcut');xlabel('f')

 

ZL=.01

ZinTL=...

Z0*(ZL+1j*Z0*tan(2*pi/c0*f*LengthTL))./...

(Z0+1j*ZL*tan(2*pi/c0*f*LengthTL));   

% short-circuit stub, real short

Zin=1./(1j*2*pi*f*C0+1./ZinTL);  

 

 

 

 

 

 

 

figure(3);plot(f,abs(Zin));grid on

title('|Zin| real short');xlabel('f')

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gamma=(Zin-Z0)./(Zin+Z0);

absGamma=abs(Gamma);

figure(4);plot(f,absGamma);title('|\Gamma|');grid on

title('|Zin| real short');xlabel('f')

001.jpg
002.jpg
003.jpg
004.jpg

b)

 

R=1e4 

 

equivalent circuit

Q0=2*pi*f0*RL*C0

 

at resonance, an equivalent inductance can be defined

 

L0=(1/(C0^.5*2*pi*f0) )^2

Q0 =

     2.524592032791982e+02

 

 

L0 =

     1.050697439590425e-09

006.jpg
005.jpg
bottom of page