top of page

exercise 4.1

ZIP with MATLAB scripts and note:

Small tag OK.jpg

Question:

 exercise 4.1 notes:

Small tag OK.jpg
Answer:

Contents                                          

 

1.- Simplified approach

2.- Example Modal Analysis and Mode Matching Method

3.- Models built with Modal Analysis and mode matching

  Symmetric horizontal fin

  Asymmetric horizontal fin

  Symmetric horizontal thick hurdle

  Asymmetric horizontal thick hurdle

  Symmetric and Asymmetric horizontal b step [DBR]

  Asymmetric horizontal b step [COLL1]

  Asymmetric horizontal b step [RAMO]

      4.- Waveguide b step modelled with fin interface

      5.- Waveguide b step modelled with thick hurdle

      6.- Wave Insertion in Rectangular Waveguides

      7.- 2D FEM Solution [OZKU]   

                Shorted Load

                Matched Load

                Tilted Feed

                Below cut-off

      8.- Limitation of Eigen-modes in 2D Conformal Mapped Domain

      9.- REMCOM Mode Converters

      10.- Wave Incidence Angles on sidewalls inside Waveguides

 

 

 

 

 

 

Comment: I was about to include in this solution another point with [ED] FDTD, but I am using FDTD to solve other [POZAR] exercises, and time spent on this exercise went through the roof, [POZAR] has 338 exercises and 104 examples. So FDTD for this exercise left for next version of this solution.

1.- Simplified approach

 

 

According to [POZAR] the apparently time saving approach to solve this exercise is to ignore that the system is a 3D wave propagating in a 3D waveguide with 3D obstacles, abstracting to transmission line (TEM), and apply [POZAR]  table (3.2) shown on right hand side.

003-02.jpg

Let's select for instance, from [HM1] the following air cooled waveguide: WR137 part number 14-LA-9020.

 

With operating band f=[5850 8200] % MHz WG14 [2][KC1][ERF24][NMAU][3]. Note that off-the-shelf [HM1] waveguide comes in z sections with regular length: 375mm. So if you design with multiples of such section length, some cutting/flanging may be saved, as well as no need making sure that deformations have been caused by custom made waveguide length. It's always worth ask waveguide suppliers to carry out such customised lengths.

004-1.jpg
004-2.jpg
003.jpg
The flaw in such over-simplification is that after going through [POZAR] (table 3.2), as follows

eps0 =8.854187817e-12;   % [F/m]=[C^2/N*m^2] permittivity empty space and dry air

mu0 =4*pi*1e-7;   % [H/m]=[T*m/A] permeability in empty space and dry air 

er=1;

mur=1;

 

c0=1/(eps0*mu0)^.5          % [m/s]  light speed

etha0=(mu0*mur/(eps0*er))^.5

 

% example 4.2

% initial check that with example 4.2 then Z0=500

% a=22.86e-3

% b=10.16e-3

% f0=1e10  % [Hz] example 4.2

% er=2.54

 

a=35e-3                            % 35mm, horizontal, rectangular waveguide WR137

b=16e-3                             % 16mm, vertical, rectangular waveguide WR137

 

f0=6e9                              % [Hz] carrier

lambda0=c0/f0

 

sigma_cu = 5.813e7                                              % assume Copper

d_skin=1/(pi*f0*mu0*sigma_cu).^.5                      % skin depth

 

m=1;n=0;                         % TEmn m=1 n=0

 

k0=2*pi*f0*(mu0*eps0*mur*er)^.5        % rectangular waveguide

k0_TE=k0_TM

k0=2*pi/lambda0

 

kc=((m*pi/a)^2+(n*pi/b)^2).^.5

 

fc=c0/(2*pi*er^.5)*((m*pi/a)^2+(n*pi/b)^2).^.5

beta=(er*k0.^2-kc^2).^.5

labmdac=2*pi./kc                                    % cut-off wavelength

lambdag=2*pi./beta                                % group propagation wavelength

vp=2*pi*f0./beta                                    % wave propagation velocity

alphad=k0^2*tand(d_skin)./(2*beta)    % attenuation caused by metal

Z0=k0*etha0/beta

 

%%

 

b2=b/2

kc2=((m*pi/a)^2+(n*pi/b2)^2).^.5

fc2=c0/(2*pi*er^.5)*((m*pi/a)^2+(n*pi/b2)^2).^.5

beta2=(k0.^2-kc2^2).^.5

labmdac2=2*pi./kc2                                  % cut-off wavelength

lambdag2=2*pi./beta2                              % group propagation wavelength

vp2=2*pi*f0./beta2                                    % wave propagation velocity

alphad2=k0^2*tand(d_skin)./(2*beta2)    % attenuation caused by metal

etha02=etha0    % since not mentioned 2nd waveguide b/2

Z02=k0*etha02/beta2

 

 

 

 

 

c0 =     2.997924580105029e+08

etha0 =     3.767303134749689e+02

 

 

 

 

 

 

 

 

a =   0.035000000000000

b =   0.016000000000000

 

f0 =     6.000000000000000e+09

lambda0 =   0.049965409668417

 

sigma_cu =    58130000

d_skin =     8.522055239991091e-07

 

 

 

 

k0 =     1.257507013126954e+02

k0 =     1.257507013126954e+02

 

kc =  89.759790102565503

 

fc =     4.282749400150041e+09

beta =  88.070534013244810

labmdac =   0.070000000000000

lambdag =   0.071342650269779

vp =     4.280559016186730e+08

alphad =     1.335309438599717e-06

Z0 =     5.379109103403914e+02

 

 

 

b2 =   0.008000000000000

kc2 =  89.759790102565503

fc2 =     4.282749400150041e+09

beta2 =  88.070534013244810

labmdac2 =   0.070000000000000

lambdag2 =   0.071342650269779

vp2 =     4.280559016186730e+08

alphad2 =     1.335309438599717e-06

etha02 =     3.767303134749689e+02

Z02 =     5.379109103403914e+02

one realises that despite waveguide changing b to b/2 then beta (left) and beta2 (right) seem to have same values on both sides of b step.

 

Apparently, TE and TM have same characteristic impedances Z0 and Z02.

 

It is obvious that b/2 metal wall opposing incident traveling wave bounces back certain power percentage of any incident wave.

 

Yet Z01==Z02 means reflection coefficient caused by b step interface or transition would be null, that it is not.

 

For a wave travelling left to right inside rectangular waveguide, the obstacle of finding half waveguide section suddenly stepped down from b to b/2 generates bouncing fields that are no longer transversal.

 

For this exercise [POZAR] solutions manual briefly suggests 'higher modes to be considered'  and then hops to next exercise.

In rectangular waveguides, TE TM modes with same [m n] indices have same TE TM cut-off frequencies values. But such is not the case for characteristic impedances: Z0_TE and Z0_TM that are different even for TE TM modes with identical [m n] indices.

M=3;   % top M mode to check

N=3;   % top N mode to check

 

Nrange=[0:1:N];

Mrange=[0:1:M];

 

nL=combinator(numel(Mrange),2,'p','r')       % permutations with repetition

MNrange=[Mrange([nL(:,1)'])' Nrange(nL(:,2))']      % no need for double for loops

 

kc=((MNrange(:,1)*pi/a).^2+(MNrange(:,2)*pi/b).^2).^.5

fc=c0/(2*pi*er^.5)*((MNrange(:,1)*pi/a).^2+ (MNrange(:,2)*pi/b).^2).^.5   % cut-off frequencies

 

beta=imag((er*k0.^2-kc.^2).^.5)            % propagation constants when alpha=0

labmdac=2*pi./kc                                   % cut-off wavelengths

lambdag=2*pi./beta                                % group propagation wavelengths

 

vp=2*pi*f0./beta                                          % wave propagation velocities

alphad=real(k0^2*tand(d_skin)./(2*beta))  % attenuation caused by metal

Z0_TE=k0*etha0./beta                              % characteristic impedance of TE TH propagating modes                       

Z0_TM=beta*etha0/k0 

      

fc_=[fc;fc];                                             % putting together all TE TH parameters

m_=[MNrange(:,1);MNrange(:,1)]

n_=[MNrange(:,2);MNrange(:,2)]

 

L1=num2str([ones(1,numel(Nrange([nL(:,1)])))'; zeros(1,numel(Nrange([nL(:,1)])))']);

L1=strrep(L1','1','E');

L1=strrep(L1,'0','H')';

beta_=[beta;beta];

vp_=[vp;vp];

lambdag_=[lambdag;lambdag];

Z0_=[Z0_TE;Z0_TM];

 

 

Such chosen WR137 rectangular waveguide has upper recommended band limit 8.2GHz a bit below TE20 and TH20 cut-off frequencies 8.5GHz.

 

So at f0 6GHz there are no upper modes, yet the 'wall' halving waveguide dimension b is going to bounce back a significant amount of wave energy, at a certain distance of the sharp b step there may or may not be 'higher modes', yet there is energy storage nearby b step discontinuity. Such energy storage caused by discontinuities like pipe  bents, or in microstrip devices like a DRO close enough to act as resonating cavity, are often in literature referred as 'evanescent' fields. Telling whether containing higher modes or not is a basic exercise of counting E peaks and H loops across a given waveguide cross section as detailed in [RAMO] pg414. Evanescent fields have to do with g=a+jb purely real, g propagation constant a attenuation due to metal and dielectric, and b propagation constant: an evanescent field is a field in cut-off, not propagating, just attenuating [WRNK].

 

From fc=c0/(2*pi*er^.5)*((m*pi/a)^2+(n*pi/b)^2).^.5 halving b with sharp step does not affect lowest cut-off fc for TE10.

So it's not just that 'higher modes'  are responsible for reflection coefficient on b sharp transition and turn page to next exercise, which 'higher modes' would be? It's the z travelling wave bouncing back on b step face behaving as mirror, along with sharp metal surface angles either forcing fields fold onto similar direction they come from (concave corner), or scatter on all possible directions (convex corner), diverting wave energy away from main travelling direction. Since waveguides are used to transport signals, left to right, from generator to load, TE10 abs(E) in rectangular waveguides shows static peaks along z measurable maxima and minima (introduce probe through slot on minima to minimise fields perturbation). If this waveguide is used as part of a resonant cavity, then the z point where such b step is implemented will cause maximal disturbance if affecting a field peak that will be bounced back and scattered, but a lower amplitude.

Also, if b step is implemented right on z=n*lambda/2 where TE10 E field is theoretically null there shouldn't be much wave bounced back, neither concave nor convex 90º would cause much reflection .

 

Next, for a waveguide z length 37.5mm long L=0.375 and lambda0=c0/f0 then

Solution to [POZAR] example 3.1.3 TE10                              [POZAR] pg118
004-4.jpg
004-5.jpg
Heading 6
If we have control over f0 carrier value, one could bring abs(E) minima to take place where b step is located:
on the halved waveguide section
 If one tries to squeeze in another lambda/2 or lambda 

L=.375   % waveguide section length

c0/f0;lambda0

L/lambda0

 

lambda02=L/7.5

f02=c0/lambda02

lambda03=L/8

f03=c0/lambda03  

lambda04=L/8.5

f04=c0/lambda04  

lambda0 =   0.049965409668417

=7.505192141695486

 

 

lambda02 =   0.050000000000000

f02 =     5.995849160210057e+09

 

lambda03 =   0.046875000000000

f03 =     6.395572437557395e+09

lambda04 =   0.044117647058824

f04 =     6.795295714904732e+09

Band edges

f1=5850e6;   % [Hz] 

f2=8200e6;   % [Hz]

 

% lower limit to implement b/2 step

lambda_f1=c0/f1

L/lambda_f1

lambda_f1_1=L/7

f1_1=c0/lambda_f1

 

% upper limit to implement b/2 step

lambda_f2=c0/f2

L/lambda_f2

lambda_f2_1=L/10

f2_1=c0/lambda_f2_1

Choosing 11.0 GHz carrier, or even 10.5 GHz both be out of band then:

lambda_f2_1=L/10.5

c0/lambda_f2_1

 

lambda_f2_1=L/11

c0/lambda_f2_1

lambda_f1 =   0.051246574018889

 =   7.317562338153099

lambda_f1_1 =   0.053571428571429

f1_1 =     5.850000000000000e+09

 

 

lambda_f2 =   0.036560055854939

 =  10.257095926983830

lambda_f2_1 =   0.037500000000000

f2_1 =     7.994465546946744e+09

Another function that may result useful to find out where to cut is numden . Here [n1,d1]=numden(sum(L)) % n1/d1=L means n1=3;d1=8
                                   Solution to [POZAR] example 3.1.3 TE11      different cross-section but same as [DBR] pg59 TE11
[DBR] pg59 rectangular waveguide cross sections are a bit more accurate compared to [POZAR] pg118 in regard of one being able to qualitatively tell around what z points along propagation axis fields are strong or weak.
004-3.jpg
004-6.jpg

Both 90º (convex) and 270º (concave) corners, perpendicularly obstructing E field, do store energy. This is opposite to changing horizontal dimension with a step, where obstacles are parallel to E field increasing current thus showing inductive behaviour, not storing but increasing consumption.

  

TE TM cut-off frequencies ordered with increasing frequency.

T=table(fc_,m_,n_,L1,beta_,vp_,lambdag_,Z0_);

T=sortrows(T,1)

 

T =

  32×9 table

                   fc              M    N  Tmode             beta                     vp                           lambdag                             Z0                     alpha       

    ________________    _    _    ____    ________________    ________________    ___________________    _____________    ____________

                   0               0    0    E                       0                     Inf                               Inf                              Inf                            Inf

                   0               0    0    H                       0                     Inf                              Inf                                0                             Inf

    4282749400.15004    1    0    E                        0                     Inf                              Inf                              Inf                             Inf

    4282749400.15004    1    0    H                        0                     Inf                              Inf                                 0                             Inf

    8565498800.30008    2    0    E        128.117293119983    294254670.271342     0.0490424450452236    369.771324163573    9.17919919056267e-07

    8565498800.30008    2    0    H        128.117293119983    294254670.271342     0.0490424450452236     383.82026895132    9.17919919056267e-07

    9368514312.82821    0    1    E        150.797557377832    249998159.775361     0.0416663599625602    314.156952864497    7.79862866317828e-07

    9368514312.82821    0    1    H        150.797557377832    249998159.775361     0.0416663599625602    451.766952145618    7.79862866317828e-07

    10301019505.5709    1    1    E        175.489951935651    214822053.497975     0.0358036755829958    269.953354039325      6.701319023298e-07

    10301019505.5709    1    1    H        175.489951935651    214822053.497975     0.0358036755829958     525.74167709831      6.701319023298e-07

    12693968257.7045    2    1    E        234.450811446979    160797531.944576     0.0267995886574294    202.064138028981    5.01603788891124e-07

    12693968257.7045    2    1    H        234.450811446979    160797531.944576     0.0267995886574294    702.379603205953    5.01603788891124e-07

    12848248200.4501    3    0    E        238.113713155448    158323984.551307     0.0263873307585512     198.95578670138    4.93887621052844e-07

    12848248200.4501    3    0    H        238.113713155448    158323984.551307     0.0263873307585512    713.353109472355    4.93887621052844e-07

    15901149085.8377    3    1    E        308.628065127639     122150627.57655      0.020358437929425    153.499005690349    3.81045759016656e-07

    15901149085.8377    3    1    H        308.628065127639     122150627.57655      0.020358437929425    924.603572854749    3.81045759016656e-07

    18737028625.6564    0    2    E        372.020604115399    101336085.759872     0.0168893476266454    127.342681026704    3.16115328101354e-07

    18737028625.6564    0    2    H        372.020604115399    101336085.759872     0.0168893476266454    1114.51814856314    3.16115328101354e-07

    19220254528.5736    1    2    E        382.695897293978    98509317.9980394     0.0164182196663399    123.790459893113    3.07297298356101e-07

    19220254528.5736    1    2    H        382.695897293978    98509317.9980394     0.0164182196663399    1146.49973199465    3.07297298356101e-07

    20602039011.1419    2    2    E        413.069739346049    91265731.3091025     0.0152109552181837    114.687900402071    2.84701114917263e-07

    20602039011.1419    2    2    H        413.069739346049    91265731.3091025     0.0152109552181837    1237.49522480914    2.84701114917263e-07

    22719016781.9613    3    2    E        459.250159673022    82088402.2553604     0.0136814003758934    103.155328588146    2.56072671622223e-07

    22719016781.9613    3    2    H        459.250159673022    82088402.2553604     0.0136814003758934     1375.8448645692    2.56072671622223e-07

    28105542938.4846    0    3    E        575.469409130636    65510192.6269717     0.0109183654378286    82.3225359568586    2.04357370634287e-07

    28105542938.4846    0    3    H        575.469409130636    65510192.6269717     0.0109183654378286    1724.02037232338    2.04357370634287e-07

    28429975137.0185    1    3    E        582.427558383375    64727555.0417252     0.0107879258402875    81.3390445615652    2.01915952701183e-07

    28429975137.0185    1    3    H        582.427558383375    64727555.0417252     0.0107879258402875    1744.86594790925    2.01915952701183e-07

    29381785404.6507    2    3    E        602.820305333347    62537893.1491545     0.0104229821915257    78.5874342753469    1.95085358422643e-07

    29381785404.6507    2    3    H        602.820305333347    62537893.1491545     0.0104229821915257    1805.95957101339    1.95085358422643e-07

    30903058516.7128    3    3    E        635.355349484422    59335475.6100969    0.00988924593501615    74.5631577095747    1.85095498803676e-07

    30903058516.7128    3    3    H      635.355349484422    59335475.6100969    0.00988924593501615    1903.42970242425    1.85095498803676e-07

2.- Example Modal Analysis and Mode Matching Method                                                                             ­

 

Inductive a step

 

[POZAR] pages 204 to 209 contain rectangular wave a step, also referred as rectangular waveguide H-plane step, or inductive step.

 

[POZAR] assumes that TE10 exciting waveguide from left side is only propagating to the 2nd section a2=a1/2 in TEn0 modes, yet:

 

  • Despite calling the exciting signal 'TE', the magnetic component of the input field is only conceived as Hx component, thus input wave is TEM.

 

  • Flange metal corners have both vertical and horizontal lines. Such corners, either convex or concave are waveguides 'per se', implying that despite a vertical E field hitting such local 'waveguides', some wave energy is funnelled horizontally from the impact point on, along whatever horizontal length is allowed to run onto.

 

       In radar such sharp surface angles and corner become distinctive part of cross-sections uniquely identifying           targets, thus such discontinuities do reflect propagating signal too and the signal level of such sharp corners

       and edges may be higher than signal reflected returning off flat surfaces.

 

  • Same applies to Ex horizontally hitting a vertical corner, why is it assumed propagating Ey in zone 1 does only generate propagating Ey in zone 2? don't know the answer but I consider it again an oversimplification that works only if the waveguide feed is straight-up enough and aligned enough to pump in the waveguide Ey and Hx only.

 

  • Literature sources refer to 'local' evanescent fields, or 'degenerated modes' when the propagation constant goes from complex to real, then such fields do not propagate, but such incident energy may still run along sharp angles (convex or concave) as long as the cut-off attenuation constant that the propagation constant is turned into, allows them to do so. In fact there are successful vehicles on the road that on purpose use optical network in cut-off, in field attenuation modes, by design, to make available just the intended amount of energy to receiving modules, without incurring propagation that in case of damaged line ('pealed, bent, broken, ..) would cause undesired signal radiation. Because if a propagating signal reaches a breached waveguide point, almost inevitably, that point becomes an antenna. Antenna developers call such technology 'leaky' antennas; when carefully pierced/slotted waveguides are turned into antennas.

 

  • The question of this exercise does not mention any relative permittivity or permeability, therefore assuming void waveguide or dry air.

 

[POZAR] pg208 claims graph agreement with [DBR] pg168  (1st case [DBR] chapter 4) graph trace lambda0/a=1.4 despite [POZAR] does not show at all any frequency or lambda0 throughout the only modal analysis explanation in the entire book.

 

[DBR] supplies 2 graphs for rectangular waveguide a step, pg169 and pg171.

Despite [DBR] arguing that pg169 measurements are old, and that readers attention should focus on pg171 analytical results, the following MATLAB lines reach X*lambda0/(Z0*2*a)=1.18 agree with [DBR] pg169  lambda0/a=1.4 trace.
 
 
On far right hand side [POZAR] quoting [DBR] modal graph.
[DBR] pg169                                                     [DBR] pg171

Nmax=5       % highest TEn0

n=[1:Nmax]

a1=35e-3            % left side

a2=a1/2

b=16e-3

c0=3e8              % [m/s] light speed

etha0=120*pi         

f0=8e9                  % [Hz]

lambda0=c0/f0       % wavelength

k0=2*pi/lambda0   % wave number

004-09.jpg
If a2=a1/2 then zone 1 incident wave doesn't make it to zone 2 in propagation, just cut-off

% beta(i,j) i:1 left zone, 2 right zone. j: TEj0 mode

beta=[(k0^2-(n*pi/a1).^2).^.5 ;

           (k0^2-(n*pi/a2).^2).^.5] 

 

 

 

 

% Z(i,j) i:1 left zone, 2 right zone. j: TEj0 mode

Z=k0*etha0./beta.^2                                                      

beta =

   1.0e+02 *

  Columns 1 through 3

   0.8795 + 0.0000i   0.0000 + 1.2820i   0.0000 + 2.3816i

   0.0000 + 1.2820i   0.0000 + 3.3633i   0.0000 + 5.2369i

  Columns 4 through 5

   0.0000 + 3.3633i   0.0000 + 4.3085i

   0.0000 + 7.0700i   0.0000 + 8.8876i

Z =

    6.1250   -2.8824   -0.8352   -0.4188   -0.2552

   -2.8824   -0.4188   -0.1727   -0.0948   -0.0600

Widening 2nd waveguide cross-section to a2=a1*2/3 still doesn't allow anything but evanescent through to 2nd waveguide section.

a2=a1*2/3

beta=[(k0^2-(n*pi/a1).^2).^.5 ;

             (k0^2-(n*pi/a2).^2).^.5]  

 

 

 

 

 

Z=k0*etha0./beta.^2   

beta =

   1.0e+02 *

  Columns 1 through 3

   0.8795 + 0.0000i   0.0000 + 1.2820i   0.0000 + 2.3816i

   0.0000 + 0.4834i   0.0000 + 2.3816i   0.0000 + 3.8387i

  Columns 4 through 5

   0.0000 + 3.3633i   0.0000 + 4.3085i

   0.0000 + 5.2369i   0.0000 + 6.6137i

Z =

    6.1250   -2.8824   -0.8352   -0.4188   -0.2552

  -20.2759   -0.8352   -0.3215   -0.1727   -0.1083

and the 1st a1/a2 ratio that I catch allowing wave through both sections (strangling a) is

a2=a1*3/4

beta=[(k0^2-(n*pi/a1).^2).^.5 ; (k0^2-(n*pi/a2).^2).^.5]  

 

 

 

 

 

 

Z=k0*etha0./beta.^2   

beta =

   1.0e+02 *

  Columns 1 through 3

   0.8795 + 0.0000i   0.0000 + 1.2820i   0.0000 + 2.3816i

   0.3832 + 0.0000i   0.0000 + 2.0372i   0.0000 + 3.3633i

  Columns 4 through 5

   0.0000 + 3.3633i   0.0000 + 4.3085i

   0.0000 + 4.6193i   0.0000 + 5.8506i

Z =

    6.1250   -2.8824   -0.8352   -0.4188   -0.2552

   32.2683   -1.1415   -0.4188   -0.2220   -0.1384

So what are the propagation/attenuation waveguide width a thresholds, for each considered mode

a1_ov_a2=[]                   % a1/a2

a1_ov_a2_nd=[0 0]    % rat(a1/a2) in num/den form

syms a2_

for k1=1:1:numel(n)

    eq1=(k0^2-(n(k1)*pi/a2_).^2)^.5==0

    a1_ov_a2=double(solve(eq1,a2_))/a1;

    [num1,den1]=numden(sym(a1_ov_a2(a1_ov_a2>0)))

    a1_ov_a2_nd=[a1_ov_a2_nd;num1 den1];

end

a1_ov_a2_nd(1,:)=[];

 

a1_ov_a2

 

a1_ov_a2_nd'

 

 

 

 

 

 

 

 

 

a1_ov_a2 =

    0.7143    1.4286    2.1429    2.8571    3.5714

=

[ 5, 10, 15, 20, 25]

[ 7,  7,  7,  7,  7]

While a narrower a (wider than a2/a1=5/7) it seems as the only way to get higher modes propagating onto second waveguide section, with inductive (a step) is widening a2/a1>1. Next higher mode may not show up propagating through 2nd waveguide section until a2/a1=10/7.

 

Now calculating General Scattering Matrix (GSM) coefficients A and B. GSM compiles propagation coefficients of multiple modes.

IN1 is support function for functions 'multiplication', a.k.a measure of degree of orthogonality: sin(n*pi*x/a)*sin(m*pi*x/a).

 

[POZAR] tags this integrals Ikn or Inm while [DBR] more accurately calls them V or I because such products are proportional to voltages and currents resulting sum of E loop integrals, and H area integrals respectively, details, right at beginning of [DBR] chapter 1 section 1.2.

function y=IN1(k1,ad1,k2,ad2)

     ad=min(ad1,ad2)

     fun1=@(x,k_1,k_2,ad1_,ad2_)       

    sin(k_1*pi*x/ad1_).*sin(k_2*pi*x/ad2_)

     y=integral(@(x) fun1(x,k1,k2,ad1,ad2),0,ad)

end

dx=a1/50

x=[0:dx:a1];

y=[0:dx:b];

 

% support function IN1= integral(sin(k1*pi*x/ad1).*sin(k2*pi*x/ad2))

IN=zeros(Nmax)

 

for k1=n

    for k2=n

        IN(k1,k2)=IN1(n(k1),a1,n(k2),a2)

    end

end

 

Q=zeros(Nmax)

for k3=n

    for k4=n

        Q(k3,k4)=2/(a2*Z(1,k4))*sum(IN(n,k3).*IN(n,k4).*Z(2,:)')

    end

end

 

Q=Q+a1/2*eye(Nmax)

 

P=zeros(Nmax,1)

for k5=n

    P(k5)=2/(a2*Z(1,1))*sum(IN(n,k5).*IN(n,1).*Z(2,:)')

end

 

 

A=inv(Q)*P

 

 

A contains reflected wave coefficients, for each mode, the a coefficient (not waveguide size) when defining scattering parameters s_ij=a_i/b_j

 

equivalent reactance

Xabs=Z(1,1)*(1+A(1))/(1-A(1))                               Xabs = -54.324597993510594
pondered equivalent reactance, as graphed in [DBR] pg171 real measurements
Xabs*lambda0*1/(2*a1*Z(1,1))              =  -6.335230086706776
pondered reactance result matches [DBR] transmission coefficients for all modes up to Nmax for f0=6e9

B=zeros(size(A));

for k2=1:1:numel(A)

    B(k2)=-2*Z(2,k2)/a2*(-1/Z(1,1)* ...

                IN1(k2,a1,1,a2)+sum(A(:)'./Z(1,:).* ...

                IN1(k2*ones(1,numel(n)),a1,n,a2)));

end

 

A

 

B

 

 

 

 

 

 

 

A =

   1.254151497314340

  -0.198608799020959

   0.113344379692468

  -0.080717563620261

   0.075996356182824

B =

   1.515966166349444

   0.213484610239494

  -0.024333028994216

  -0.030128796347184

   0.027606324539843

Because in this exercise I also show [DBR] pg307 erroneous expression for rectangular waveguide b step needed for this exercise (Symmetric and Asymmetric b step), I actually consider [DBR] pg169 measurements for inductive a step to be more reliable than any analytical calculation in [DBR] chapter 4 1st case: old does not necessarily mean obsolete.

 

Checking on structure modes only without considering specific input signals is only one part of the problem about finding out whether a waveguide is going to let certain modes through, or certain polarisation only.

 

Cut-off frequencies have been checked with the fc formula for rectangular cavity, for constant cross-section. Yet B coefficients tell that despite a2/a3=2/3 that shouldn't let signal propagating

 

 

Capacitive b step

 

 

half way on paper.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.- Models built with Modal Analysis and Mode Matching                                                                                        ­

 

Waveguides containing fins parallel to perpendicular waveguide cross-sections, in literature are often also referred as irises, thin hurdles, or diaphragms. Such obstacles are not sharp a or b size changes (size steps) but relatively thin obstacles, relative to waveguide size along propagating dimension z.

Such internal obstacles are useful to build waveguide splitters, combiners, and filters. Although not waveguide size step changes, just obstacles to propagating waves, some (thin) obstacles show similar local impedance behaviour, around a given discontinuity point, to for instance the sharp b step asked in this exercise.

 

More expensive but more reliable, if one has the relevant test instruments, devices and time to collect measurements, it would be to proceed the following way: 1.- build different prototypes 2.- measure real devices 3.- fit curves, and 4.- present formulas as the available models. But such approach alone is often, just for one particular application, ground for theses, building such DUT is time consuming and there are not so many network analysers around, even with the proliferation of software VNAs (Anritsu pocket VNA..).

 

[DBR] is a mix of analytical and numerical results as well as some field measurements, analytical and numerical contents using multi-mode analysis and field matching around discontinuities.

 

When fitting functions to way points (either measured or assumed to be expected points) one may be able to use geometry symmetries, like [DBR] often supplying models for symmetric waveguide discontinuities and then briefly adding some change of variables for readers to obtain asymmetric models of similar discontinuities. but when such geometry simplifications on reasonably simple structures, substantially shorter simulation times may be achieved compared to feeding a 3D structure to an electromagnetic simulator.

 

Modal analysis alone, as used in [DBR] is giving way to FEM and FDTD solutions, that also use Mode Matching and Field Matching, but FEM and FDTD allow working with any kind of input signal.

 

[DBR] [1] chapter 4 starts precisely with rectangular waveguide symmetric a step (TM10 mode) that has same inductive behaviour as [POZAR] unnumbered example in pages 204 to 209.

For the computing power available at the time [DBR] was written, smartly overlapping proposed equivalent circuit functions on measurement points does the job. In such line of work it's useful to always bear in mind the following: 1.- only use reliable measurements 2.- if simulation functions don't match measurement points, don't use and don't show such curves, and 3.- make curves fit data points, never the other way around.

 

[POZAR] briefly depicts a few discontinuities and an equivalent generic circuits, without functions, and a reference to [DBR].

 

The IET has reprinted [DBR] that in turn is a partial reprint of an extensive post-WWII by MIT RF laboratory work of measuring and function fitting. Following some waveguide obstacles as explained in [DBR].  

 

Symmetric horizontal fin                      

[DBR] understands as symmetric fin with presence above and below leaving middle gap, but not necessarily both fins with exactly same size.

 

The 1st rectangular waveguide obstacle I found in [DBR] matching the one asked in this exercise is in [DBR] pg219,

 

 

[DBR] original source formulas in attached [006-2]

 

Let's assign lambda0 k0 lambdag beta Z0_TE Z0_TM to WR137 values

 

 

 

 

 

Following, beta Z0_TE and Z0_TM frequency dependencies

lambda0=c0/f0

m=1;n=0;                                                                          % TEmn m=1 n=0

k0=2*pi*f0*(mu0*eps0*mur*er)^.5                            % rectangular waveguide k0_TE=k0_TM

kc=((m*pi/a)^2+(n*pi/b)^2).^.5                                % wave number for mode [m n]

fc=c0/(2*pi*er^.5)*((m*pi/a)^2+(n*pi/b)^2).^.5  % cut-off frequency

beta=(er*k0.^2-kc^2).^.5                             % propagation constant when alpha=0

labmdac=2*pi./kc                                                             % cut-off wavelength

lambdag=2*pi./beta                                               % group propagation wavelength

vp=2*pi*f0./beta                                                              % wave propagation velocity

alphad=k0^2*tand(d_skin)./(2*beta)                          % attenuation caused by metal

Z0_TE=k0*etha0/beta

Z0_TM=k0*beta/k0

bottom of page