example 6.2
ZIP with MATLAB scripts and note:
example 6.2 notes:
er=2.08 % alumina
tand=0.0004
d=1.59e-3 % substrate depth
Z0=50;f0=5e9;
A=Z0/60*((er+1)/2)^.5+(er-1)/(er+1)*(.23+.11/er)
B=120*pi*pi/(2*Z0*(er)^.5)
% guess W/d<2
Wd_below2=8*exp(A)/(exp(2*A)-2) % W/d
% guess W/d>2
Wd_above2=2/pi*(B-1-log(2*B-1)+(er-1)/(2*er)*(log(B-1)+.39-.61/er)) % W/d
% Wd_below2>2 is contradictory therefore W/d>2
Wd=Wd_above2;W=Wd*d
ee=(er+1)/2+(er-1)/2*1/(1+12*d/W)^.5
% effective relative permittivity ee within [1 er]
phi_target_deg=180;
% in degree, phi=beta*L=(ee)^.5*k0*L
c0=2.998e8;
lambda0=c0/f0
lambda=lambda0/(ee)^.5
Length_resonator=lambda/2 % m
k0=2*pi*f0/c0 % wave number
vp=c0/(ee)^.5 % propagation velocity
beta=2*pi*f0*ee^.5/c0 % propagation constant
% 283pg print error
% 2*pi*5e9*1.8^.5/3e8 = 1.4049e+02, not 151.0 in book.
D=Length_resonator/lambda % D fraction effective lambda, not lambda0
Rs_Cu_10GHz=1.84e-2 % ohm
alpha_c_Np=Rs_Cu_10GHz/(Z0*W) % [Np/m]
alpha_d_Np=k0*er*(ee-1)*tand/(2*(ee)^.5*(er-1)) % [Np/m]
Np2dB=10*log10((exp(1))^2)
alpha_c=alpha_c_Np*Np2dB % dB/m conductor attenuation
alpha_d=alpha_d_Np*Np2dB % dB/m dielectric attenuation
alpha_Np=alpha_c_Np+alpha_d_Np
alpha=alpha_c+alpha_d % dB/m
Q0=beta/(2*alpha_Np)
A = 1.133332777192545
B = 8.212007246924477
Wd_below2 = 3.249293149858584
Wd_above2 = 3.192093511758551
W = 0.005075428683696
ee = 1.787527097919599
lambda0 = 0.059960000000000
lambda = 0.044847197283540
Length_resonator = 0.022423598641770
k0 = 1.047896148629017e+02
vp = 2.242359864176976e+08
beta = 1.401020729892018e+02
D = 0.500000000000000
Rs_Cu_10GHz = 0.018400000000000
alpha_c_Np = 0.072506190695208
alpha_d_Np = 0.023775354903431
Np2dB = 8.685889638065037
alpha_c = 0.629780770455079
alpha_d = 0.206510108797030
alpha_Np = 0.096281545598639
alpha = 0.836290879252109
Q0 = 7.275645198573834e+02