top of page

ZIP with MATLAB scripts and note:

example 6.5

 example 6.5 notes:

pozar_example_06_example_05_question.jpg

er=95;                                                                  % titania
tand=.001;a=4.13e-3;L=8.255e-3;c=3e8;

x=[0:.001:15];y=besselj(0,x);                                   % order 0
[nx0,ny0]=intersections(x,y,x,zeros(1,numel(x))); 

% finding zeros of J(n,x)


p01=nx0(1)                 % p01 = 2.404825587623834;

% 1st approach

L=8.255e-3;a=4.13e-3
f1=@(x) real(tan((er*x^2 - (p01/a)^2)^.5*L/2) -
...
((p01/a)^2-x^2)^.5./(er*x^2-(p01/a)^2)^.5)
s=0

for k=[10:.1:600]
    s=[s fzero(f1,k)];
end
s2=unique(s);
stem(s2)

 

 

 

 

 

 

k02=p01/a
k01=p01/(a*er^.5)

 

f1=c*k01/(2*pi)
f2=c*k02/(2*pi)

k0_range=intersect(s2(s2>=k01),s2(s2<=k02))

min(k0_range)
max(k0_range)

k1=min(k0_range)
k2=max(k0_range)

 

f1=c*k1/(2*pi)
f2=c*k2/(2*pi)

tand=.001;
Qd=1/tand

 

 

(1): Titania, AKA Titanium Dioxide TiO2  https://www.azom.com/article.aspx?ArticleID=1179

comment: there are limitations when attempting to find Bessel function zeros with standard commands like solve and fslove in the following ways

syms x;y=besselj(0,x); 

solve(y)

 

 

 

 

 

 

 

 

 

fun=@(x) besselj(0,x)

fsolve(fun,1)

nx0 =

   2.404825587623834

   5.520078116818740

   8.653727924339442

  11.791534449561969

  14.930917711006265

  

 

 

 

 

 

 

k02 =     5.822822246062551e+02

k01 =  59.740895725000328

f1 =     2.852417657811384e+09

f2 =     2.780192829618922e+10

 

 

 

 

k1 =  66.005247425991286

k2 =   5.507664289192397e+02

 

f1 =     3.151518419355034e+09

f2 =     2.629715989547041e+10

 

 

Qd =        1000

 

 

 

 

 

 

Warning: Cannot solve symbolically. Returning a numeric approximation instead. In solve (line 303)

=

-197.13557308566141473621200268072

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

 

<stopping criteria details>

ans =

   2.404825557044777

002.jpg
bottom of page