ZIP with MATLAB scripts and note:
example 6.7
example 6.7 notes:
It would be accurate to calculate frequency deviations with the exact expression: (310pg):
same as
But when fields E H and band parameters not known, but for
-
small DS
-
all frequencies close enough to f0, "f: |f-f0|<<1
then :
the numerator integral of the initial expression can be constrained to the volume where the material is introduced in the cavity, therefore
Wm We: stored magnetic and electric energy,
c0=299792458
f0=5e9
er=3;e0=8.854e-12;mu0=4*pi*10^-7
A=1
etha0=120*pi;lambda0=c0/f0;k0=2*pi/lambda0
a=.02;b=.01;d=.1
t=.0025
dx=a/200;
x=[0:a/200:a];y=[0:b/200:b];z=[0:d/200:d];
since relative magnetic permeability is null, the function to integrate in the numerator is |Ey| only.
% or with anonymous function: df0(t)/f0
df_rel=[]
for k=1:1:numel(y)
fun1=@(xsym,ysym,zsym)...
(er-1)*e0*(A*sin(pi*xsym/a)*sin(pi*zsym/d)).^2;
N1=triplequad(fun1,0,a,0,y(k),0,d);
fun2=@(xsym,ysym,zsym)...
(e0*(A*sin(pi*xsym/a)*sin(pi*zsym/d)).^2.+...
mu0*((1j*A/(k0*etha0*a)*sin(pi*xsym/a).*cos(pi*zsym/d)).^2.+...
(1j*pi*A/(k0*etha0*a)*cos(pi*xsym/a).*sin(pi*zsym/d)).^2));
D1=triplequad(fun2,0,a,0,b,0,d);
df_rel=[df_rel N1/D1];
end
df_rel(1)=[];df_rel(end)=[];
figure(1);plot(y([2:end-1]),df_rel);grid on;
xlabel('t');ylabel('df0')
title('frequency relative deviation with integral')
% df0(t)/f0 from direct expression
df_rel2=[]
for k=1:1:numel(y)
E1=(er-1)*e0*A^2*a*y(k)*d/4;
E2=a*b*d*e0/2*A^2;
df_rel2=[df_rel2 -E1/E2];
end
figure(2);plot(y,df_rel2);grid on;
xlabel('t');ylabel('df0')
title('frequency relative deviation with direct expression')
note the graph shows |df0|>1 but given the long list of approximations this calculation should only be applied for frequencies close to f0.