example 5.7
ZIP with MATLAB scripts and note:
example 5.7 notes:
3 section Chebyshev transformer (Chebyshev º equal ripple) matching ZL=100 ohm to Zg=50 ohm with pass band attenuation not higher than gamma_m=0.05 Cheby polynomials:
syms x
chebyshevT([1, 2, 3, 4, 5], x)
for n=[1, 2, 3, 4, 5]
figure(1);
hp1(n)=fplot(chebyshevT(n, x))
hold on
end
patch('XData',[-1 1 1 -1],'YData',[1 1 -1 -1],'LineStyle','--','FaceAlpha',0)
axis([-1.5, 1.5, -6, 6]);grid on;ylabel('T_n(x)')
hL1=legend(hp1([1:5]),'T_1(x)','T_2(x)','T_3(x)','T_4(x)','T_5(x)')
hL1.Location='southeast'
title('Chebyshev polynomials of the first kind')
ans =
[ x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1, 16*x^5 - 20*x^3 + 5*x]
[POZAR] doesn't mention it but Chebyshev 2nd class polynomials are of no use to keep a flat pass band
chebyshevU([1, 2, 3, 4, 5], x)
for n=[1, 2, 3, 4, 5]
figure(2);
hp2(n)=fplot(chebyshevU(n, x))
hold on
end
patch('XData',[-1 1 1 -1],'YData',[1 1 -1 -1],'LineStyle','--','FaceAlpha',0)
axis([-1.5, 1.5, -6, 6]);grid on;ylabel('U_n(x)')
hL2=legend(hp2([1:5]),'U_1(x)', 'U_2(x)', 'U_3(x)', 'U_4(x)', 'U_5(x)')
hL2.Location='southeast'
title('Cheby polynomials 2nd kind don''t fit')
ans =
[ 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1, 32*x^5 - 32*x^3 + 6*x]
3 sections means N=3 reflection coefficient (filter input) is:
gamma(a)=2*exp(-1j*N*a)*Chebyshev(N,x)
gamma_m=(SWR-1)/(SWR+1)
One ca get theta_m by solving
T1=1/gamma_m*abs((ZL-Z0)/(ZL+Z0))
sec(theta_m)=cosh(1/N*acosh(T1))
N=3;ZL=100;Zg=50; gamma_m=0.05;
cosh(1/N*acosh(1/.05*abs((ZL-Zg)/(ZL+Zg))))
theta_m=asec(cosh(1/N*acosh(1/gamma_m*abs((ZL-Zg)/(ZL+Zg)))))*180/pi % degree
With MATLAB there is no need for POZAR approximation (5.63)
cosh(1/N*acosh(abs(log(ZL/Zg)/(2*.05))))
theta_m_approx= asec(cosh(1/N*acosh(abs(log(ZL/Zg)/(2*gamma_m)))))*180/pi
= 1.394648447495264
theta_m = 44.190468508828843
= 1.407530092552086
theta_m_approx = 44.727288553390935