top of page

ZIP with MATLAB scripts and note:

exercise 6.2

Small tag OK.jpg
pozar_06_exercise_02_question.jpg

 exercise 6.2 notes:

Small tag OK.jpg
001.jpg

The following list of approximations are used in the solutions manual:

 

  • for L= lambda/2 and L=l the behaviour of a short-circuited transmission line input impedance is quite the same on the observation port.

  • thus, the general expression of Zin on the left becomes:

002.jpg
  • that in turn, with trigonometric basic relations between tanh and tan is:

003.jpg
  • f~f0, more precisely f=f0+df  or  

004.jpg
  • alpha constant

  • alpha*L<<1 implies

005.jpg

All the above reduces Zin to the following simplification:

006.jpg

c0=2.998792586

er=1

f1=4e9

f2=6e9

f0=5e9

Nf=1e6                % amount frequency points between f1 f2

df=abs(f1-f2)/(Nf+1)         % frequency resolution

f=[f1:df:f2];

delta_f=f-f0;

lambda1=c0/f1

lambda2=c0/f2

lambda0=c0/f0

dlambda=abs(lambda1-lambda2)/(Nf+1) 

lambda=[lambda2:dlambda:lambda1];

      

L=lambda0 

       

RLoad=.1;Rgen=50;

ZL=RLoad;    % load assumed constant resistance over all band

Z0=Rgen;

       

alpha=.1

beta=2*pi./lambda;

       

D=1

Zin_1=...

Z0*(ZL+Z0*tanh(alpha*D*c0./f+1j*2*pi*f/c0*L))./...

(Z0+ZL*tanh(alpha*D*c0./f+1j*2*pi*f/c0*L));  

% lossy TL general expression

       

[min_absZin nf0]=min(abs(Zin_1))

f(nf0)

        

Zin_3=Z0*(alpha*L+1j*2*pi*delta_f*2*pi/(2*pi*f0));     

% 2nd approximation

 

Zin_1_lossless=Z0*1j*tan(2*pi*f/c0*L);   % lossless TL   

 

figure(1);   % lossy transmission line

subplot(2,1,1);plot(f,abs(Zin_1));

title('exact |Zin1|');grid on

subplot(2,1,2);plot(f,angle(Zin_1));

title('exact phase(Zin1)');grid on

 

 

 

 

 

 

 

 

 

 

 

 

     

figure(2);   % lossy transmission line      

subplot(2,1,1);

plot(f,real(Zin_1));title('exact real(Zin1)');grid on

subplot(2,1,2);plot(f,imag(Zin_1));

title('exact Im(Zin1)');grid on

007.jpg
008.jpg

figure(3);   % lossless transmission line

plot(f,abs(Zin_1_lossless));title('ideal TL |Zin1|');grid on

figure(5);    % 2nd approximation

subplot(2,1,1);hold all;

plot(f,real(Zin_3));

title('2nd approximation real(Zin3)');grid on

subplot(2,1,2);hold all;plot(f,imag(Zin_3));

title('2nd approximation Im(Zin3)');grid on

R=real(Zin_1);

X=imag(Zin_1./(delta_f));

figure(6);plot(f,X);grid on;title('L with exact Zin')

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

    

R=real(Zin_3);

X=imag(Zin_3./(2*delta_f));

figure(7);plot(f,X);grid on;title('L with approximate Zin')

009.jpg
010.jpg
011.jpg
012.jpg

L=X(nf0)

 

R=R(nf0)

 

Q=2*pi*f0*L/R

 

% or Q=pi*Z0/(Z0*alpha*length_TL)

 

pi/(alpha*lambda0)

 

% or Q=beta/(2*alpha)

 

beta(nf0)/(2*alpha)

L =

     3.141592653589793e-08

R =

     2.998792586000000e-09

Q =

     3.291192744428560e+11

 

 

 =

     5.238095939439863e+10

 

 

 =

     5.028571096149054e+10

bottom of page