top of page

ZIP with MATLAB scripts and note:

exercise 6.3

Small tag OK.jpg

 exercise 6.3 notes:

Small tag OK.jpg
pozar_06_exercise_03_question.jpg
000.jpg
001-2.jpg

c0=2.998792586

er=1

f1=4e9;f2=6e9;f0=5e9

Nf=1e6                % amount frequency points between f1 f2

df=abs(f1-f2)/(Nf+1)         % frequency resolution

f=[f1:df:f2];

delta_f=f-f0;

lambda1=c0/f1;lambda2=c0/f2;lambda0=c0/f0

dlambda=abs(lambda1-lambda2)/(Nf+1) 

lambda=[lambda2:dlambda:lambda1];

L=lambda0/4

       

RLoad=1e9;Rgen=50;

ZL=RLoad;    % load assumed constant resistance over all band

Z0=Rgen;

       

alpha=.1;beta=2*pi./lambda;

       

D=1/4

Zin_1=...

Z0*(ZL+Z0*tanh(alpha*D*c0./f+1j*2*pi*f/c0*L))./...

(Z0+ZL*tanh(alpha*D*c0./f+1j*2*pi*f/c0*L));  

% lossy TL general expression

       

[min_absZin nf0]=min(abs(Zin_1))

 

f(nf0)

        

Zin_3=Z0./(alpha*L+1j*2*pi*delta_f*2*pi/(2*pi*f0));     

% 2nd approximation

 

Zin_1_lossless=Z0*1j*cot(2*pi*f/c0*L);   % lossless TL     

min_absZin =     2.500056844268334e-04

nf0 =      500002

=     5.000000099999900e+09

even reducing the open circuit value and increasing alpha, Zin peak is quite sharp so the top graph of the plot on right hand side has been zoomed

 

figure(1);   % lossy transmission line

subplot(2,1,1);plot(f,abs(Zin_1));

title('exact |Zin1|');grid on

subplot(2,1,2);plot(f,angle(Zin_1));

title('exact phase(Zin1)');grid on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure(2);   % lossy transmission line      

subplot(2,1,1);

plot(f,real(Zin_1));title('exact real(Zin1)');grid on

subplot(2,1,2);plot(f,imag(Zin_1));

title('exact Im(Zin1)');grid on

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure(3);   % lossless transmission line

plot(f,abs(Zin_1_lossless));title('ideal TL |Zin1|');grid on

001.jpg
002.jpg
003.jpg

figure(5);    % 2nd approximation

subplot(2,1,1);hold all;

plot(f,real(Zin_3));

title('2nd approximation real(Zin3)');grid on

subplot(2,1,2);hold all;plot(f,imag(Zin_3));

title('2nd approximation Im(Zin3)');grid on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R=real(Zin_1);

X=imag(Zin_1./(delta_f));

figure(6);plot(f,X);grid on;title('L with exact Zin')

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

R=real(Zin_3);

X=imag(Zin_3./(2*delta_f));

figure(7);plot(f,X);grid on;title('L with approximate Zin')

004.jpg
005.jpg
006.jpg

C=-1/X(nf0)

 

 R=R(nf0)

 

 % unloaded Q

 Q0=2*pi*f0*R*C

 

 % or Q=pi*Z0/(Z0*alpha*length_TL)

 

 pi/(alpha*lambda0)

 

 % or Q=beta/(2*alpha)

 

 beta(nf0)/(2*alpha)

C =

     5.026538250561876e-07

R =

     4.747528413972352e+04

 

Q0 =

     7.496981465000001e+08

 

 

 =

     5.238095939439863e+10

 

 

 =

     5.236000596344180e+10

bottom of page