top of page

ZIP with MATLAB scripts and note:

exercise 6.7

Small tag OK.jpg

 exercise 6.7 notes:

Small tag OK.jpg

Correction solutions manual that refers to section 2.2 in [POZAR] for the expressions of the electric and magnetic field inside coaxial:

 

Both fields show 1/r yet the solutions manual only applies such dependency to the electric field, preventing any numerical attempt to answer the question from reaching a successful result.

 

On the right hand side, precisely from 2.2, expressions of stationary fields inside coaxial:

001_q.jpg
001_q2.jpg

c0=298972586

f0=1e9

lambda0=c0/f0

e0=8.854e-12                                                       % [F/m] free space permittivity

mu0=4*pi*1e-7                                                     % [H/m] free space permeability

etha0=120*pi

er=2

mur=1

etha=etha0/er^.5

lambda=lambda0/er^.5

 

Length=lambda/2                                                   % coaxial electric length

in2m=1e-3*25.4

a=.0855/2*in2m

b=.285/2*in2m

 

b/a                                                                       % = 3.33

 

V0=1                                                                   % [V/m] electric field strength

 

% same b/a as example 3.3 133pg therefore kc*a=.45 and

Kc=549

% in example 3.3 there's a script to generate k*ca over b/a graph

 

beta=(kc^2-(2*pi/c0*f0*er^.5)^2)^.5

 

E_rho2=@(rho,phy,z) 4*(V0/(log(b/a)))^2*1./rho.^2.*sin(beta*z).*sin(beta*z)

H_phy2=@(rho,phy,z) (2*V0/(etha*log(b/a)))^2.*1./rho.^2.*(cos(beta*z)).^2

 

We=e0*er/4*integral3(E_rho2,a,b,0,2*pi,0,Length)

Wm=mu0*mur/4*integral3(H_phy2,a,b,0,2*pi,0,Length)

 

We/Wm

010 coax graph support.jpg

We =     2.607489720808700e-09

Wm =     2.619286323990977e-09

 

=

   0.995496252901324

tic

We_ov_Wm=[]

for er=1:1:10

    for V0=.25:.25:5

        lambda=lambda0/er^.5;

        Length=lambda/2;                           % coaxial electric length

        beta=(kc^2-(2*pi/c0*f0*er^.5)^2)^.5;

        etha=etha0/er^.5;

 

        E_rho2=@(rho,phy,z)...          

              4*(V0/(log(b/a)))^2*1./rho.^2.*sin(beta*z).*sin(beta*z);

 

        H_phy2=@(rho,phy,z)...

              (2*V0/(etha*log(b/a)))^2.*1./rho.^2.*(cos(beta*z)).^2;

 

        We=e0*er/4*integral3(E_rho2,a,b,0,2*pi,0,Length);

        Wm=mu0*mur/4*integral3(H_phy2,a,b,0,2*pi,0,Length);

        We_ov_Wm=[We_ov_Wm We/Wm];

    end

end

toc

figure(1);plot(We_ov_Wm);grid on

title('We/Wm')

 

the x reference axis is just the iteration sweeping through different values of er and V0, quite 1

012.jpg
bottom of page