top of page

example 3.1.3

ZIP with MATLAB scripts and note:

 example 3.1.3 notes:

Small tag OK.jpg

Rectangular waveguide:

 

Find the lower TE mode cut-off frequencies for a rectangular waveguide of section a=1.07cm b=0.43cm filled with Teflon er=2.08 real conductor tand=.0004.

01_001.jpg

Directly applying the cut-off frequency formula from the above table:

pozar_03_example_01_3.m                                                                                                                 

clear all;close all;clc

f0=15e9; % choose operating frequency [Hz]

a=1.07e-2;b=0.43e-2;   % choose waveguide cross-section dimensions [m]

c=10*a;        % choose waveguide length [m]

er=2.08;  % Teflon  % choose filling material

dx=min(a,b)/50;dy=dx;dz=dx;; % set space resolutions

 

c0=299792458;

M_range=[0:1:5];N_range=[0:1:5];  % modes

 

for k=M_range

   for s=N_range

     fc(k+1,s+1)=c0/(2*pi*er^.5)*((M_range(k+1)*pi/a)^2+(N_range(s+1)*pi/b)^2).^.5;

   end

end

fc   % cut-offs

fMN=zeros(max(M_range)+1,max(N_range)+1,3);

fMN(:,:,3)=fc;

fMN(:,:,2)=meshgrid(M_range,N_range);

fMN(:,:,1)=meshgrid(M_range,N_range)';

L=[0 0 0];

for k=1:1:(M_range(end)+1)

    for s=1:1:(N_range(end)+1)

         L=[L;fMN(k,s,1) fMN(k,s,2) fMN(k,s,3)];

    end

end

L=uint64(L)

 

TEM doesn't propagate inside rectangular waveguides, removing all null lines off L

 

k_all_nulls=[];

for k=1:1:size(L,1)

    if L(k,1)==0 && L(k,2)==0 &&L(k,3)==0

        k_all_nulls=[k_all_nulls k]

    end

end

L(k_all_nulls,:)=[]

 

% sorting cut-offs in frequency ascending order

fc=L(:,3);

[n,v]=sort(fc);

L=L(v,:)

fc_sorted=L(:,3);

 

% modes that get through, for a given input frequency f0

% f0=f_cutoff doesn't get through, it has to be f0>f_cutoff

% safety_factor=1 

% safety_factor=1 means no safety band,

% safety_factor=1.5 means at least half carrier above cutoff 

 

k=1;

while L(k,3)<=f0 && k<size(L,1)

    k=k+1;

end

k

 

L_through=L([k:end],:)

fc_through=fc_sorted([k:end],:)

  0                               2.417077773416413   4.834155546832826

   0.971349011746783   2.604953716549509   4.930778716754183

   1.942698023493566   3.101022504470010   5.209907433099017

L =

             0             0             0

             0             0             0

             0             1   24170777734

             0             2   48341555468

             1             0    9713490117

             1             1   26049537165

             1             2   49307787168

             2             0   19426980235

             2             1   31010225045

             2             2   52099074331

L =

             0             1   24170777734

             0             2   48341555468

             1             0    9713490117

             1             1   26049537165

             1             2   49307787168

             2             0   19426980235

             2             1   31010225045

             2             2   52099074331

L =

  8×3 uint64 matrix

             1             0    9713490117

             2             0   19426980235

             0             1   24170777734

             1             1   26049537165

             2             1   31010225045

             0             2   48341555468

             1             2   49307787168

             2             2   52099074331

 

 

 

k =     2

 

L_through =

             2             0   19426980235

             0             1   24170777734

             1             1   26049537165

             2             1   31010225045

             0             2   48341555468

             1             2   49307787168

             2             2   52099074331

 

fc_through =

   9713490117

   19426980235

   24170777734

   26049537165

   31010225045

   48341555468

   49307787168

   52099074331

[POZAR] takes the previous TE TM fields simulations inside ideal infinite rectangular waveguides from

[RAMO] chapter 8 named 'Waveguides with cylindrical conducting boundaries'. Despite the name of the chapter before any cylindrical waveguide result the complete analytical study for rectangular waveguides precedes cylindrical.

01_002.jpg

Some Standard waveguides shorter table [POZAR]

 

 

 

 

 

 

 

 

As for the parallel plates table, the following script helps develop values of rectangular waveguide parameters table in page 117.

01_003.jpg

And these are the field simulations inside ideal rectangular waveguides available in early Microwave Journal Handbooks

01_004.jpg

As clearly explained as it is in [SDK] the analytical solutions are one way to attempt simulating how E H fields are going to behave on, through, around, matter structures, but the usefulness of the results, as well as the difficulty to obtain meaningful results, both limit the analytical approach to certain well known basic structures.

 

From [SDK] the general field inside an ideal waveguide of dimensions x [0 a] y [0 b] z [0 c] with charge distribution e f(x,y,z) (e=e0*er or epws0*er) and the boundary condition V(0,y,z)=V(x,0,z)=V(x,y,0)= V(a,y,z)=V(x,b,z)=V(x,y,c)=0 ((all waveguide metal properly grounded) has to comply with

01_005.jpg

 

Assuming a solution with the following form

the coefficients are

On the above graphs of |E| |H| from [POZAR], the amplitudes of E and H are peak values and qualitative only.

01_007.jpg
01_006.jpg

As shown in the table on the right hand side [POZAR] above, while [SDK] shows the potential of the field along the waveguide  having shape sin(x)*sin(y)*sin(z) the field equations for TE and TM modes produce basically the same shape sin(x)*sin(y)*exp(1j*beta*z).

 

If beta is real the wave is in propagation mode. If beta is complex only the wave doesn't propagate, only attenuates.

Worth recalling that all these fields and potentials are phasor notation, the real measureable expressions being ther real parts of the right hand side expressions [POZAR] pg22:

 

Following, |E| in TE10 TE11 and TE21 modes, assuming f(x,y,z) constant, null or far away on a side of the waveguide, ideal conductor.

TE ignoring f(x,y,z):

01_008.jpg
01_009.jpg

f0=2e10                                        % carrier frequency [Hz]

a=1.07e-2;b=0.43e-2;                % waveguide cross-section dimensions [m]

length_waveguide=5*b;            % waveguide length [m]

er=2.08;                                        % waveguide fill material: Teflon

dx=min(a,b)/50;dy=dx;dz=dx; % set space resolutions

c0=299792458;

 

lambda0=c0/f0;lambda=lambda0/er^.5;beta=2*pi/lambda;

 

dx=a/50;x_range=[0:dx:a];y_range=[0:dx:b];

z_range=[0:dx:length_waveguide];

[X,Y,Z]=meshgrid(x_range,y_range,z_range);

 

m=1;n=0;                                      % TE10 Electric field

E10x=cos(m*pi*X/a).*sin(n*pi*Y/b).*exp(1j*beta*Z);

E10y= sin(m*pi*X/a).*cos(n*pi*Y/b).*exp(1j*beta*Z);

E10z=zeros(size(E10x));

absE10=((abs(E10x)).^2+(abs(E10y)).^2).^.5;

xslice=x_range(1);yslice=y_range(1);zslice=z_range(50);

 

colormap('jet');shading interp

daspect([1 1 1]);axis tight;

 

figure(1);h1=slice(X,Y,Z,absE10,xslice,yslice,zslice);

ax1=gca;

ax1.DataAspectRatio=[1 1 1];     % avoid deformation if moving point of view

h1(1).EdgeColor='none';h1(2).EdgeColor='none';h1(3).EdgeColor='none';

colormap(ax1,'jet');shading interp

daspect(ax1,[1 1 1]);axis tight;

xlabel(ax1,'x:[0 a]');ylabel(ax1,'y:[0 b]');

zlabel(ax1,'z:[0 length waveguide');

title(ax1,'TE10 |E|');

campos(ax1,[0.047 0.083 -.104]);

01_010.jpg

m=1;n=1;    % TE11 Electric field

E11x=cos(m*pi*X/a).*sin(n*pi*Y/b).*exp(1j*beta*Z);

E11y= sin(m*pi*X/a).*cos(n*pi*Y/b).*exp(1j*beta*Z);

E11z=zeros(size(E11x));

absE11=((abs(E11x)).^2+(abs(E11y)).^2).^.5;

 

xslice=x_range(1);yslice=y_range(1);zslice=z_range(50);

 

figure(2);h2=slice(X,Y,Z,absE11,xslice,yslice,zslice);

ax2=gca;

ax2.DataAspectRatio=[1 1 1];   

% avoid deformation if moving point of view

h2(1).EdgeColor='none';

h2(2).EdgeColor='none';

h2(3).EdgeColor='none';

colormap(ax2,'jet');shading interp

daspect(ax2,[1 1 1]);axis tight;

 

xlabel('x:[0 a]');ylabel('y:[0 b]');

zlabel('z:[0 length waveguide');

title(ax2,'TE11 |E|');

campos(ax2,[0.047 0.083 -.104]);

m=2;n=1;    % TE21 Electric field

E21x=cos(m*pi*X/a).*sin(n*pi*Y/b).*exp(1j*beta*Z);

E21y= sin(m*pi*X/a).*cos(n*pi*Y/b).*exp(1j*beta*Z);

E21z=zeros(size(E21x));

absE21=((abs(E21x)).^2+(abs(E21y)).^2).^.5;

 

xslice=x_range(1);yslice=y_range(1);zslice=z_range(50);

 

colormap('jet');shading interp

daspect([1 1 1]);axis tight;camlight

 

figure(3);h3=slice(X,Y,Z,absE21,xslice,yslice,zslice);

ax3=gca;

ax3.DataAspectRatio=[1 1 1];     % avoid deformation if moving point of view

h3(1).EdgeColor='none';

h3(2).EdgeColor='none';

h3(3).EdgeColor='none';

colormap(ax3,'jet');shading interp

daspect(ax3,[1 1 1]);axis tight;   %camlight('headlight')

 

xlabel(ax3,'x:[0 a]');ylabel(ax3,'y:[0 b]');

zlabel(ax3,'z:[0 length waveguide');

title('TE21 |E|');

campos(ax3,[0.047 0.083 -.104]);

01_011.jpg
01_012.jpg

Standard rectangular waveguides [RAMO]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some Standard rectangular waveguides [POZAR]

01_013.jpg
01_014.jpg

References:

[SDK]

Numerical Techniques in Electromagnetics with MATLAB, Third Edition, by  Matthew Sadiku 

 

https://www.amazon.co.uk/Numerical-Techniques-Electromagnetics-MATLAB-Third/dp/142006309X/ref=sr_1_fkmr0_1?ie=UTF8&qid=1523113439&sr=8-1-fkmr0&keywords=Sadiki+Electromagnetics+MATLAB

 

 

[RAMO]

Fields and Waves in Communication Electronics, 3rd edition, by S. Ramo, T. R. Whinnery, and T. van Duzer,John Wiley & Sons, New York, 1994.

bottom of page