top of page

exercise 5.23

ZIP with MATLAB scripts and note:

pozar_05_exercise_23_question.jpg

 exercise 5.23 notes:

Small tag OK.jpg
Small tag OK.jpg
001.jpg

|gamma| over beta*L

 

ZL=100;Z0=50;a=1/L*log(Z0/ZL)

gamma(L)=.5*log(ZL/Z0)*exp(-1j*beta*L)*sin(b*L)/(b*L)        same as

gamma(D)=.5*log(ZL/Z0)*exp(-1j*2*pi*D)*sin(2*pi*D)/(2*pi*D)          with D=1 same as b*L=2*pi

gamma_mod=abs(.5*log(ZL/Z0).*exp(-1j*2*pi*D).*sin(2*pi*D)./(2*pi*D));

plot(D,gamma_mod);grid on;

 

 

 

 

Exponential impedance tapers should be used with length multiples of lambda/2, not lambda/4.

002.jpg

Finding L that obtains |gamma|=<0.05 over a 100% BW 

nD1=find(gamma_mod<=.05)

hold all

plot(D(nD1),0.05,'ro')

 

 

 

 

  

 

  

 

one could certainly consider the first burst of consecutive D meeting |gamma|=<0.05

min(D(nD1))

 

nD1_HF=nD1(find(D(nD1)<.75)); 

% all D around D=0.5 gamma_mod<.05

% gamma_mod(nD1(find(D(nD1)<.75)))  % check

 

max(nD1(find(D(nD1)<.75)))

 

D_HF=[min(D(nD1)) max(nD1(find(D(nD1)<.75)))]

 

nD1_LF=nD1(find(D(nD1)>.75));  % low frequency band

 

D1=D(nD1_LF(1))  % LF starts here, highest frequency of LPF

003.jpg

plot(D(nD1_LF),0.05,'bo')

 

the term is the way to ask for as much band stuck to the highest

frequency of the low frequency band or base band.

 

When no actual frequencies given, it's useful to think in terms of octaves: What values of L would fit octave up octave down around an undefined central frequency within baseband.

Understanding D1 is the highest frequency of the Low Pass or base band, then the central frequency D0=(D1+D2)/2; lower frequency limit D2=2*D0; and upper frequency limit D1=.5*D0 In optics people use lambdas or Ds rather than frequencies, which is a bit of upside down for the 'baseband' people (UHF, microwave, K, ..) from their point of view.

 

Note that the solutions manuals plots over betal*L but this plot is over D: beta*L = 2*pi*D

 

 

 

 

D0=D1*2

D2=D0*2

 

so the result is:

D_LF=[D1 D2]

 

centred at

D0

 

octave up, octave down is a 150% (fractional) bandwidth (2*f0-.5*f0)/f0=1.5

 

100% BW is half-octave up, half octave down: (1.5*f0-.5*f0)/f0=1, therefore

 

D0=D1*2

D2=D0*1.5

D_LF=[D1 D2]

 

same centre

D0

004.jpg

D0 =   1.718000000000000

D2 =   3.436000000000000

 

D_LF= 0.859000000000000   3.436000000000000

 

 

 

D0 =   1.718000000000000

 

 

 

 

 

D0= 1.718000000000000

D2 =   2.577000000000000

D_LF=1.718000000000000 2.577000000000000

 

 

D0= 1.718000000000000

How many Chebyshev sections would be required for the base band of previous point

005.jpg

BLm is beta*L, for 100% fractional bandwidth

BLm100=(1-2)*pi/4  % =pi/4

gamma_L=(ZL-Z0)/(ZL+Z0);

gamma_m=.05;

 

% reversing sec(BLm)

N=acosh(abs(gamma_L/gamma_m))/acosh(sec(BLm100))

N_df100=ceil(N)

 

BLm150=(1.5-2)*pi/4  % broader freq band means narrower BL

N=acosh(abs(gamma_L/gamma_m))/acosh(sec(BLm150))

N_df150=ceil(N)

BLm100 =  -0.785398163397448

 

 

 

 

N_df100 =    3

 

BLm150 =  -0.392699081698724

 

N_df150 =     7

N_df100 =3 means the Chebyshev transformer would be 3*lambda/4 long while the exponential transformer would have length D0=1.71

The Cheby impedance transformer would be a bit shorter, D=0.21, 0.21*lambda0 saved.

 

It’s worth mentioning that despite the gamma=(ZL-Z0)/(ZL+Z0) ~ ln(ZL/Z0) broadly used throughout this chapter, when using it here to calculate the amount of Chebyshev impedance transformer sections, then

N_df100_approx=ceil(cosh(abs(log(ZL/Z0)/(2*gamma_L)))/acosh(sec(BLm100)))

N_df150_approx=ceil(cosh(abs(log(ZL/Z0)/(2*gamma_L)))/acosh(sec(BLm150)))

N_df100_approx =     2

N_df150_approx =     4

bottom of page