top of page
exercise 1.8
ZIP with MATLAB scripts and note:
example 1.1 notes:
c0=299792458 % [m/s] light speed
mu0=4*pi*1e-7 % [H/m] permeability
mur=1 % [] relative permeability
etha0=120*pi % [Ohm] air intrinsic impedance
E0=1 % [V/m] incident electric field amplitude
f0=1e9 % [Hz]
lambda0=c0/f0 % [m] wavelength
k0=2*pi/lambda0 % [m^-1] wave number
metal conductivity : [S/m] = [1/Ohm] = [mho/m]
annealed (=deoxidized) copper conductivity 5.813e7
sigma_Cu=59.6e6 % common copper conductivity
metal skin depth
ds_Cu=(2/(2*pi*f0*mu0*mur*sigma_Cu))^.5
gamma : propagation constant
gamma_Cu=(1+j)*(2*pi*f0*mu0*sigma_Cu/2)^.5
approximation of gamma for good conductor
gamma_Cu=(1+1j)/ds_Cu
inside the metal
alpha_Cu=real(gamma_Cu)
beta_Cu=imag(gamma_Cu)
wave intrinsic impedance
etha_Cu=(1+1j)/(sigma_Cu*ds_Cu)
R : reflection coefficient metal surface
R=(etha_Cu-etha0)/(etha_Cu+etha0)
a) transmission loss [dB] air-Cu and Cu-air
T : transmission coefficient metal surface
T_air_Cu=2*etha_Cu/(etha_Cu+etha0)
assuming T_air_metal = T_metal_air
T_air_Cu_dB=10*log10(abs(T_air_Cu))
simple signal path budget
-150-10*log10(abs(T_air_Cu))-10*log10(abs(T_air_Cu))
b) dz to achieve 150dB
finding out required Cu thickness
syms dz
eq1=10*log10(exp(-2*alpha_Cu*dz))==-150-2*10*log10(abs(T_air_Cu))
z1=double(solve(eq1,dz))
z1_mm=z1*1e3
c.- Additional 1: How many sheets of common household tin foil would achieve same attenuation?
dz2=.2e-3 % [m] common tin foil thickness
sigma_tf=2.436e6 % [S/m] tin foil electrical conductivity
ds2 << dz2 ok
ds_tf=(2/(2*pi*f0*mu0*mur*sigma_tf))^.5 % tin foil skin depth
gamma2 : tin foil propagation constant
gamma_tf=(1+j)*(2*pi*f0*mu0*sigma_tf/2)^.5
approximation of gamma for good conductor
gamma_tf=(1+1j)/ds_tf
inside the metal
alpha_tf=real(gamma_tf)
beta_tf=imag(gamma_tf)
wave intrinsic impedance
etha_tf=(1+1j)/(sigma_tf*ds_tf)
R : reflection coefficient metal surface
R_air_tf=(etha_tf-etha0)/(etha_tf+etha0)
T : transmission coefficient air - metal surface
T_air_tf=2*etha_tf/(etha_tf+etha0)
2*10*log10(abs(T_air_tf))
how many layers
n=1;
while n*2*10*log10(abs(T_air_tf))>-150
n=n+1;
end
n
So to achieve 150dB wrap it up at least thrice, not twice. Twice would be 140dB only.
d.- Additional 2: What happens if one (wrongly) assumes metal behaving as dielectric
It may be the case that one considers calculating transmission coefficient on the right hand side by just swapping intrinsic impedances as follows:
For copper
R_Cu_air=(etha0-etha_Cu)/(etha0+etha_Cu)
T_Cu_air=2*etha0/(etha0+etha_Cu)
20*log10(abs(T_air_Cu*T_Cu_air))
So apparently Cu, no matter how thick, it wouldn't reach -150dB Insertion Loss
for tin foil
R_tf_air=(etha0-etha_tf)/(etha0+etha_tf)
T_tf_air=2*etha0/(etha0+etha_tf)
20*log10(abs(T_air_tf*T_tf_air))
At this point one could reasonably ask the following 2 questions:
1.- So which one is the correct metal-air T coefficient?
2.- Although once a metal sheet is thicker than the skin depth then most of
the current remains in one side of the metal sheet, just using T12 T21 there's no influence of the actual thickness of the metal whatsoever in this Insertion Loss calculation.
metal thickness should somehow be taken into
account, because if the metal sheet is not thick enough, then there may be a
substantial amount of field reaching the other side. So why is is that
metal thickness is not considered with this dielectric-like way to
calculate insertion losses?
e.- Additional 3: Alternative calculation with exp(-alpha*z) and radiated field
So let's review the wave path:
1.- E0 V/m hits metal surface [X Y] plane
H0 is magnetic field associated incident E0.
2.- T*E0 electric field gets in the metal and the wave in attenuation mode (heat through solids) moves towards the other side being attenuated along the path with exp(-alpha*z)
3.- the amplitude of the electric field reaching the other side of the copper sheet is E1=T*E0*exp(-alpha*dz) the amplitude of the magnetic field reaching the other side of the copper sheet is H1=1/etha*T*E0*exp(-alpha*dz)
example 1.3 solves radiated field from current sheet.
The magnetic field H1 that has reached the other side of the metal sheet
generates a surface current J0=cross(nz,H1) but this does not consider
the type of metal where the surface current is generated.
4.- on the right hand side surface of the metal sheet the surface current is
J1=sigma*E1
5.- EH fields that 'get out' of the metal sheet, radiated, back onto air:
H2=-J1/2*exp(-1j*k0*z)
E2=-etha0*J1/2*exp(-1j*k0*z)
|H1|=|H2|
E2=-etha0*sigma*T*E0*exp(-alpha*z)/2*exp(-1j*k0*z)
the target is to reach 150dB attenuation, therefore
|E0|^2/|E2|^2 [dB]= 150
comparing Cu and tf (tin foil) sheets same thickness z1 the apparently thick enough to reach 150dB
10*log10(abs(1/(-etha0*sigma_Cu*T_air_Cu*exp(-alpha_Cu*z1)/2 )^2))
10*log10(abs(1/(-etha0*sigma_tf*T_air_tf*exp(-alpha_tf*z1)/2 )^2))
copper is a better reflector than tin foil
10*log10(abs(T_air_Cu))
10*log10(abs(T_air_tf))
but for whatever field manages to cross the foil, for same thickness, copper is also a better radiator because higher conductivity causes higher surface current on the other side.
Using z1 thick Cu foil would not work to reach 150dB
So how thick should a copper foil be to reach 150dB
syms dz3
eq2=abs(1/(-etha0*sigma_Cu*T_air_Cu*exp(-alpha_Cu*dz3)/2 )^2)==10^(150/10)
z3=double(solve(eq2,dz3))
comparing actual dz required to reach 150dB against the figure reached
assuming air -metal and metal-air 'symmetry'
z3/z1
about 4 times more than the theoretical skin depth calculation
and how thick should a tin foil be to reach 150dB
syms dz4
eq3=abs(1/(-etha0*sigma_tf*T_air_tf*exp(-alpha_tf*dz4)/2 )^2)==10^(150/10)
z4=double(solve(eq3,dz4))
z4/z3
tf has to be 4.6 thicker than Cu
f.- Additional 4: Comparing thin films
alpha attenuates fields faster inside copper than inside tin foil
zm=[dz2/100:dz2/100:dz2]; % avoid null thickness
L1=exp(-alpha_Cu*zm);
L2=exp(-alpha_tf*zm);
figure;
plot(zm,L1,zm,L2);
title('\alpha_Cu vs \alpha_tinfoil')
grid on;
xlabel('z [m]')
legend({'Cu','tin foil'})
but
% correction factor ; zero scale
k1=10*log10(abs(-etha0*sigma_Cu*T_air_Cu*exp(-alpha_Cu*zm(1))/2 ).^2);
L1_total_dB=-10*log10(abs(-etha0*sigma_Cu*T_air_Cu*exp(-alpha_Cu*zm)/2 ).^2)+k1 ;
k2=10*log10(abs(-etha0*sigma_tf*T_air_tf*exp(-alpha_tf*zm(1))/2 ).^2)
L2_total_dB=-10*log10(abs(-etha0*sigma_tf*T_air_tf*exp(-alpha_tf*zm)/2 ).^2) +k2;
figure;
plot(zm,L1_total_dB,zm,L2_total_dB);
title('total attenuation comparison')
xlabel('z [m]')
ylabel('[dB]')
grid on;
legend({'Cu','tin foil'})
hitting a metal with a plane wave allows the calculation of transmitted
and reflected coefficients, but when transferring wave from metal back
to air, assuming 'symmetry' as suggested in the solutions manual, seems
precarious, because air-metal-air is not the same as air-dielectric-air.
Also simplifying all current to be contained in skin depth, may not be
correct if foil to thin.
So to achieve 150dB insertion loss, 1/4 mm copper would be a start value, not the ridiculously thin 17e-6 mm reached in the solutions manual, or 15.7e-6 mm initially calculated here following solutions manual assumptions for this exercise.
c0 =
299792458
mu0 =
1.256637061435917e-06
mur =
1
etha0 =
3.769911184307751e+02
E0 =
1
f0 =
1.000000000000000e+09
lambda0 =
0.299792458000000
k0 =
20.958450219516820
sigma_Cu =
58130000
ds_Cu =
2.087468689778981e-06
gamma_Cu =
4.790491013811943e+05 + 4.790491013811943e+05i
gamma_Cu =
4.790491013811943e+05 + 4.790491013811943e+05i
alpha_Cu =
4.790491013811943e+05
beta_Cu =
4.790491013811943e+05
etha_Cu =
0.008240996067112 + 0.008240996067112i
R =
-0.999956280158039 + 0.000043717930620i
T_air_Cu =
4.371984196094063e-05 + 4.371793061992124e-05i
T_air_Cu_dB =
-42.088159120089287
ans =
-65.823681759821426
eq1 =
(10*log(exp(-(1028750111805209*dz)/1073741824)))/log(10) == -2315964911294421/35184372088832
z1 =
1.581932081170362e-05
z1_mm =
0.015819320811704
dz2 =
2.000000000000000e-04
sigma_tf =
2436000
ds_tf =
1.019721296935102e-05
gamma_tf =
9.806601107632283e+04 + 9.806601107632283e+04i
gamma_tf =
9.806601107632283e+04 + 9.806601107632283e+04i
alpha_tf =
9.806601107632283e+04
beta_tf =
9.806601107632283e+04
etha_tf =
0.040256983200461 + 0.040256983200461i
R_air_tf =
-0.999786430075859 + 0.000213524321767i
T_air_tf =
2.135699241410437e-04 + 2.135243217668019e-04i
ans =
-70.399825499771453
n =
3
R_Cu_air =
0.999956280158039 - 0.000043717930620i
T_Cu_air =
1.999956280158039 - 0.000043717930620i
ans =
-78.155908199760205
R_tf_air =
0.999786430075859 - 0.000213524321767i
T_tf_air =
1.999786430075859 - 0.000213524321767i
ans =
-64.380153108901482
ans =
-50.794028920683310
ans =
-89.364994674807505
ans =
-42.088159120089287
ans =
-35.199912749885726
eq2 =
(295147905179352825856*exp((1028750111805209*real(dz3))/1073741824))/135459907029827669987286769305613 == 1000000000000000
z3 =
6.407589163314412e-05
ans =
4.050483102014013
eq3 =
(2361183241434822606848*exp((6739044966751685*real(dz4))/34359738368))/45405028879597000520151672519881 == 1000000000000000
z4 =
2.968332330089966e-04
ans =
4.632525985100075
bottom of page